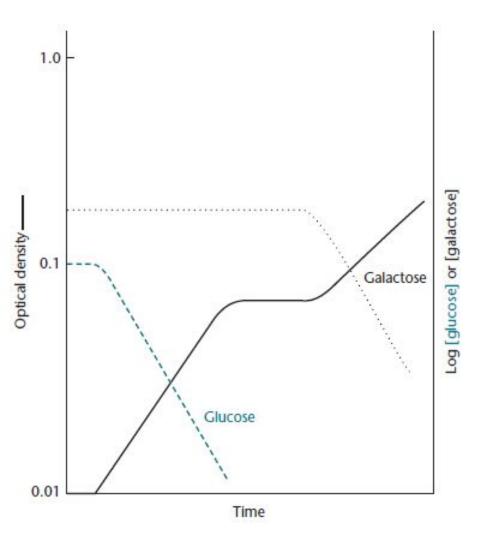
Глобальные регуляторные системы бактерий

System	Response	Regulatory gene(s) (protein[s])	Category of mechanism	Some genes, operons, regulons, and stimulons
Nutrient limitation				
Carbon	Catabolite regulation	crp (CAP, also called CRP)	DNA-binding activator or repressor	lac, ara, gal, mal, and numerous other C source operons
	Control of fermentative vs. oxidative metabolism	ста (Ста)	DNA-binding activator or repressor	Enzymes of glycolysis, Krebs cycle
Nitrogen	Response to ammonia limitation	rpoN	Sigma factor (σ ^N)	glnA (GS) and operons for amino acid degradation
		ntrBC (NtrBC)	Two-component system	
Phosphorus	Starvation for inorganic orthophosphate (P _i)	phoBR (PhoBR)	Two-component system	>38 genes, including phoA (bacterial alkaline phosphatase) and pst operon (P, uptake)
Growth limitation				
Stringent response	Response to lack of sufficient aminoacylated-tRNAs for protein synthesis	relA (RelA), spoT (SpoT)	(p)ppGpp metabolism	rRNA, tRNA, ribosomal proteins, amino acid biosynthesis operons
Stationary phase	Switch to maintenance metabolism and stress protection	rpoS (RpoS), sigma factor (σ°)	Many genes with os promoters; complex effects on many operons	
Oxygen	Response to anaerobic environment	fnr (Fnr)	CAP family of DNA- binding proteins	>31 transcripts, including narGHJI (nitrate reductase)
	Response to presence of oxygen	arcAB (ArcAB)	Two-component system	>20 genes, including cob (cobalamin synthesis)

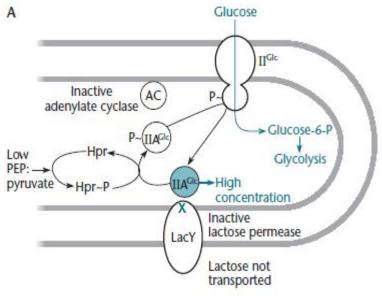
Глобальные регуляторные системы

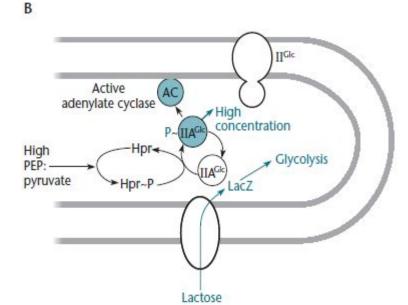

System	Response	Regulatory gene(s) (proteIn[s])	Category of mechanism	Some genes, operons, regulons, and stimulons
Stress				
Osmoregulation	Response to abrupt osmotic upshift	kdpDE (KdpD, KdpE)	Two-component system	kdpFABC (K* uptake system)
	Adjustment to osmotic environment	envZ/ompR (EnvZ/ OmpR)	Two-component system	OmpC and OmpF outer membrane proteins
		micF	sRNA	ompF (porin)
Oxygen stress	Protection against reactive oxygen species	soxS (SoxS)	AraC family of DNA- binding proteins	Regulon, including sodA (superoxide dismutase) and micF (sRNA regulator of ompF)
		oxyR (OxyR)	LysR family of DNA- binding proteins	Regulon, including katG (catalase)
Heat shock	Tolerance of abrupt temperature increase	rpoH (RpoH)	Sigma factor (o [™])	Stimulon; Hsps (heat shock proteins), including dnaK, dnal, and grpE (chaperones), and lon, clpP, clpX, and hflB (proteases)
Envelope stress	Misfolded Omp proteins	rpoE (RpoE)	Sigma factor (σ^z)	>10 genes, including rpoH (o ^H) and degP (encoding a periplasmic protease)
	Misfolded pilus	cpxAR (CpxAR)	Two-component system	Overlap with RpoE regulon
pH shock	Tolerance of acidic environment	Many	Many	Complex stimulon

Совокупность генов и/или оперонов, подвергающихся глобальной регуляции при помощи одной и той же молекулы белка или РНК, называется **регулон**. Совокупность регулонов, реагирующих на одни и те же условия окружающей среды, называется **стимулон**.

Сейчас мы немножко обо всем об этом поговорим.

Катаболитная


РЕГУЛЯЦИЯЭто совокупность механизмов, позволяющих бактериальной клетке в каждый момент времени вовлекать в метаболизм тот источник углерода, от которого ей будет больше всего пользы (то есть энергии и катаболитов).

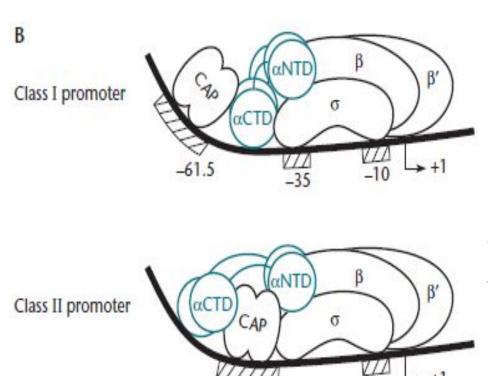


Хороший пример такой регуляции – так называемый диауксический рост клеток *E.coli* на среде с глюкозой и каким-либо другим источником углерода, например, галактозой. Хитрые бактерии сначала сожрут всю глюкозу, поскольку это самый энергетически выгодный для них субстрат, а уж когда глюкоза полностью закончится, переключатся на галактозу.

А если вы после этого дадите им опять глюкозы – они тут же плюнут на галактозу и опять примутся за свое любимое лакомство!

ЦиклоАМФ-зависимая катаболитная регуляция у E.coli

рования и метаболизм сахаров

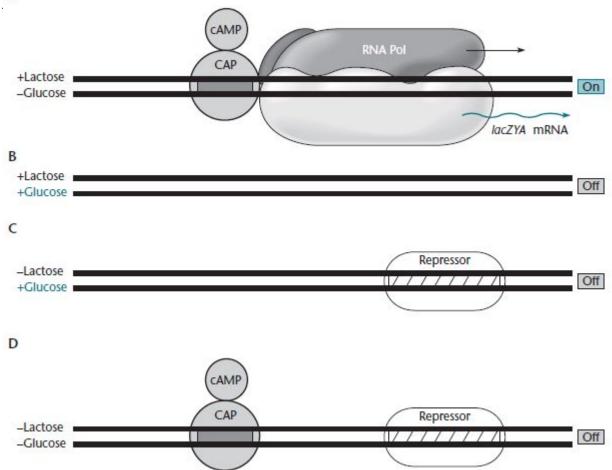

Глюкоза поступает в клетку с участием белка IIAGlc фосфотрансферазной системы сахаров. Если глюкозы много, то пирувата в клетке больше, чем фосфоенолпирувата. РЕР конвертируется в пируват, отдавая лишний фосфат на белок Нрг, но этих лишних фосфатов совсем мало. А с белка Нрг фосфаты переходят как раз на белок IIAGlc. В фосфорилированной форме он не способен активировать фермент аденилатциклазу, и уровень цАМФ в клетке низок. Помимо этого, IIAGlc без фосфата еще и подавляет транспорт низкоэнергетических сахаров (лактозы) в клетку.

Если же глюкозы в клетке мало, то PEP становится больше пирувата. Он начинает активно конвертироваться в пируват, форфорилированного белка Hpr много, и все эти фосфаты передаются на IIAGlc. Фосфорилированный IIAGlc (1) активирует аденилатциклазу, и в клетке становится больше цАМФ, (2) перестает подавлять транспорт низкоэнергетических сахаров в клетку.

А цАМФ-то и нужен для глобального клеточного ответа на изменившийся источник углерода!

CAP-

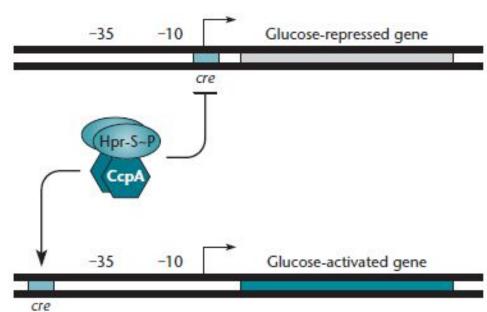
РЕГУЛОНCAP – это cAMP-activated protein. Связавшись с цАМФ, этот белок становится активатором многих оперонов, связанных с метаболизмом сахаров (Lac, Gal, Ara и многие другие). Таким образом, все эти опероны подвергаются как специфической (как мы видели на прошлой лекции), так и глобальной регуляции. Механизмы CAP-регуляции разные на разных оперонах.



Вот два примера работы САР на промоторах. В первом случае (Lac) он связывается с С-концевым доменом альфа-субъединицы РНК-полимеразы и стимулирует связывание фермента с -35 и -10.

Во втором случае (Gal) САР взаимодействует с N-концевым доменом той же субъединицы, что приводит к локальному расплетанию ДНК в районе начала транскрипции.

Но в любом случае у САР есть свой участок связывания ДНК, который всегда несколько выше промотора. И такое связывание возможно только для цАМФ-связанной формы белка!


Регуляция Lac-оперона оперонного и регулонного уровн^A

Единственный вариант, когда оперон активен – присутствие лактозы и отсутствие глюкозы. Во всех остальных случаях либо не будет активного САР (если есть глюкоза), либо будет специфический репрессор Lacl (если нет лактозы).

Катаболитная регуляция у

B. subtilis Регуляция, основанная на цАМФ, вообще ни разу не универсальная. Например, у B.subtilis цАМФ вообще не синтезируется. Вместо него они используют белок СсрА. Но фосфорилирование и здесь важно, причем бацильный белок Hpr тут также играет роль.

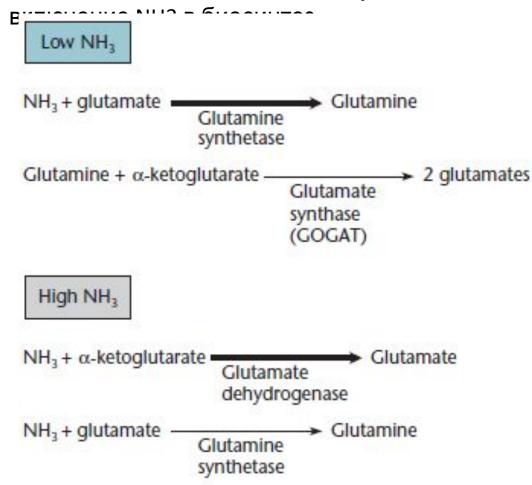
СсрА действует на несколько десятков оперонов, связанных с метаболизмом сахаров, связываясь с так называемым сге-участком. Любопытно, что если сге находится выше промотора, то СсрА выступает как активатор транскрипции, а если сте перекрывается с промотором – то как репрессор!

СсрА-зависимая катаболитная регуляция у **B.**subtilis

Target gene

Каскад фосфорилирования и метаболизм При поступлении глюкозы в клетку активно Cell membrane PEP Glu-6P Pyruvate Glycolysis ATP FBP(+) Hpr kinase/ phosphorylase ADP A ADP СсрА CcpA CcpA

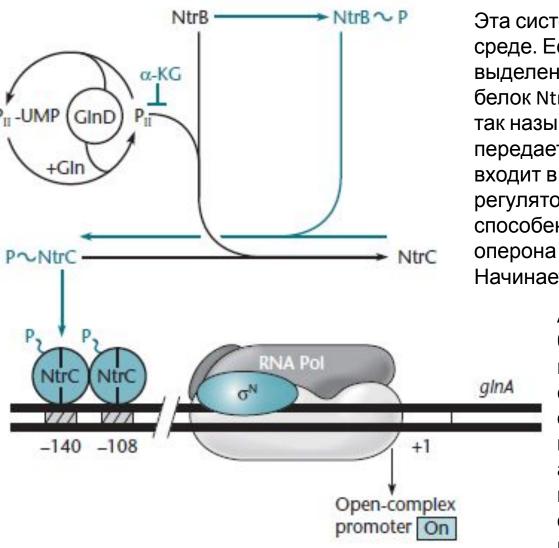
Target gene


Сахаровзапускается гликолиз, становится много промежуточного продукта, фруктозо-1,6бисфосфата (FPB). Он активирует белок Hpr-киназу, которая фосфорилирует Hpr по остатку СЕРИНА. Hpr-S-P связывается с СсрА и активирует его, теперь он может связаться с ДНК и активировать/репрессировать транскрипцию.

> Интересно, что тот же белок Нрг, фосфорилированный по остатку ГИСТИДИНА, активирует транспорт в клетку низкоэнергетических сахаров, как в случае *E.coli*. А фосфорилирование этого белка по СЕРИНУ ингибирует фосфорилирование по ГИСТИДИНУ. Соответственно, транспорт низкоэнергетических сахаров получается подавленным, если имеется большое количество глюкозы.

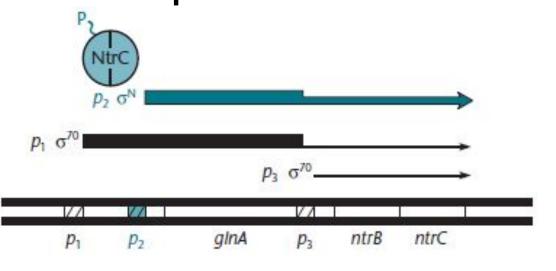
Регуляция ассимиляции

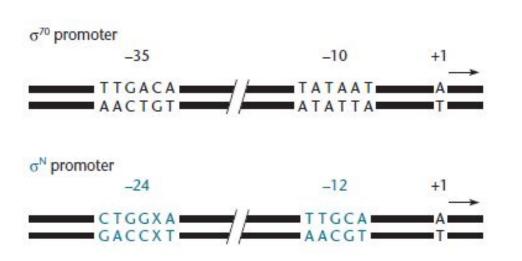
Азот входит в состав многих биологических молекул, поэтому его наличие является обязательным для жизни.


В большинстве случаев азот встраивается в биомолекулы в виде NH3. Поэтому все формы азота должны быть восстановлены клеткой до NH3 и потом уже использоваться в различных реакциях. Это называется ассимиляционное восстановление азота. А потом уже начинается собственно ассимиляция, то есть

В зависимости от количества NH3, клетка может использовать разные пути его включения в биомолекулы. Соответственно, все это надо регулировать!

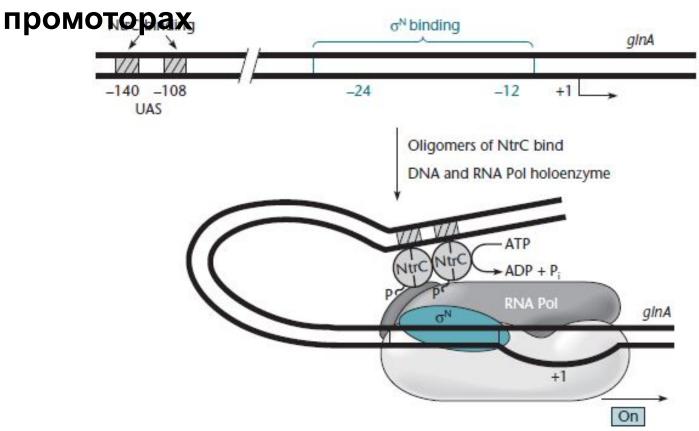
glnA-регулон и система передачи


Это как раз совокупность оперонов, регулирующихся в ответ на изменение концентрации NH3. Рассмотрим регуляцию оперона, содержащего glnA – ген глютаминсинтазы.

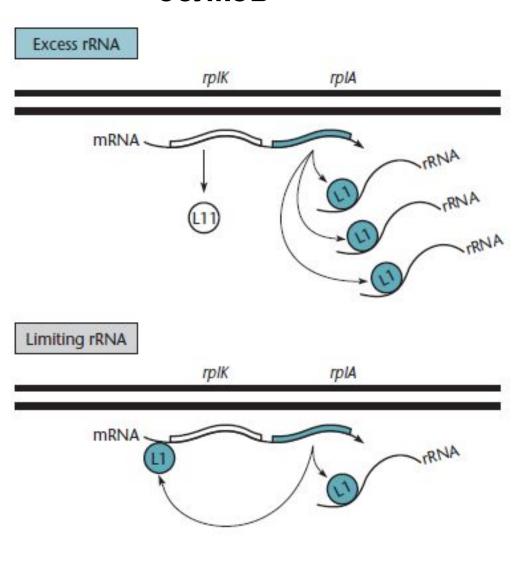

Эта система завязана на количестве азота в среде. Если NH3 мало, происходят реакции, выделенные синим: автофосфорилируется белок NtrB (ген входит в оперон). Этот белок — так называемая сенсорная киназа, он передает фосфат на белок NtrC (ген также входит в состав оперона) — так называемый регулятор ответа. Фосфорилированный NtrC способен активировать транскрипцию glnA-оперона и других оперонов данного регулона. Начинает синтезироваться глютаминсинтаза.

А если NH3 много, в дело вступает белок PII, который теряет УДФ-модификацию, потому что глютамин стимулирует белок GlnD, который ее и отщепляет. PII без модификации подавляет автофосфорилирующую активность NtrB, и дело кончается невозможностью активировать glnA-оперон и остальные опероны регулона. А оно и не надо – NH3 и так

glnA-оперон устроен любопытным образом


В этом опероне три промотора, но только один (p2) подвержен NtrC-зависимой регуляции. Это потому, что остальные промоторы могут узнаваться обычной РНК-полимеразой с сигма70-субъединицей. А вот p2 подходит только для фермента с нестандартной сигма54-субъединицей.

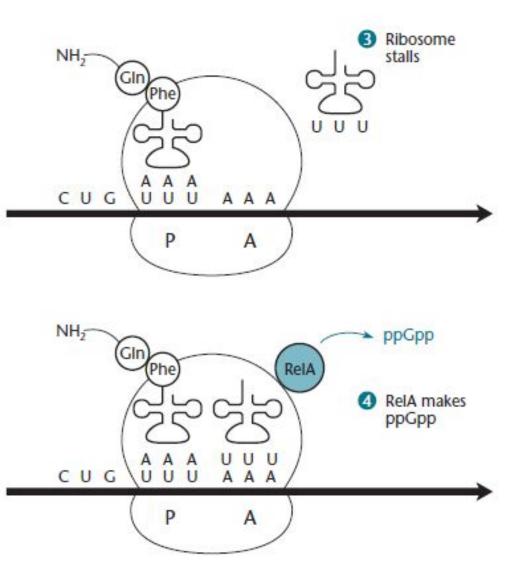
Никаких -35 и -10 элементов в промоторах для сигмы54 (она же сигмаN) нет, вместо этого есть совсем другие элементы, -24 и -12.


Промоторы p1 и p3 нужны для того, чтобы в клетке даже в случае большого количества NH3 в среде имелись малые количества глютаминсинтазы, она же все равно нужна.

Механизм работы NtrC на сигма54-зависимых

Две молекулы NtrC должны сначала связаться с двумя участками UAS (upstream activated sequence). После этого NtrC может связаться с сигма54-содержащей РНК полимеразой (изгибая при этом ДНК). АТФазная активность NtrC приводит к началу расплетания ДНК и формирования «открытого комплекса», необходимого для нормальной инициации транскрипции.

Регуляция синтеза рибосомных белков

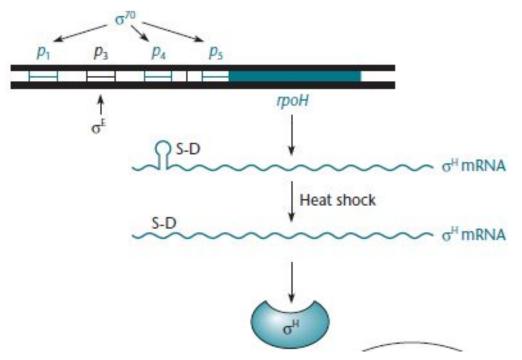

В геноме *E.coli* имеется несколько оперонов, состоящих из генов рибосомных белков. Все они регулируются схожим образом, формируя тем самым регулон рибосомных белков.

Если имеется свободная рРНК, то регуляторный белок (здесь – L1) будет с ней связываться и начинать сборку рибосом.

А вот если свободной рРНК мало, то избыток L1 начнет связываться с регуляторной областью первого гена оперона (здесь – rplK, кодирующий белок L11) и полностью подавлять транскрипцию. Таким образом, выходит, что количество молекул рРНК всегда равно количеству молекул каждого из рибосомных белков.

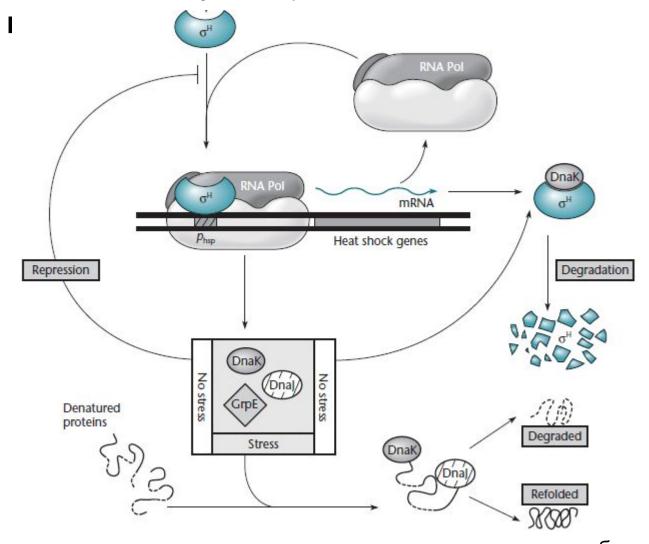
Stringent response (строгий

Этот тип регуляции приводит к тому, что синтез рРНК и тРНК подавляется в условиях голодания по одной или более аминокислоте.


Основной компонент stringent response – гуанозинтетрафосфат (ррGpp). Он синтезируется в ответ на ситуацию, когда в клетке нет аминокислоты (на рисунке лизина). Когда рибосома доходит до лизинового кодона ААА, она останавливается, потому что нет аминоацилированной тРНК-Лиз с антикодоном UUU, которую мог бы доставить в А-участок рибосомы фактор EF-Tu. Однако есть деацилированная лизиновая тРНК, которая при достаточно долгой паузе (а она вообще будет бесконечной, раз лизина нет) может случайно войти в А-участок рибосомы даже без помощи EF-Tu.

Деацилированная тРНК в А-участке – сигнал для белка RelA, который мгновенно начинает синтез ppGpp, перенося фосфаты на 3'-конец ГТФ с молекулы АТФ. Молекулярный механизм работы ppGpp до конца не известен, но он подавляет транскрипцию генов pPHK и тРНК. А раз

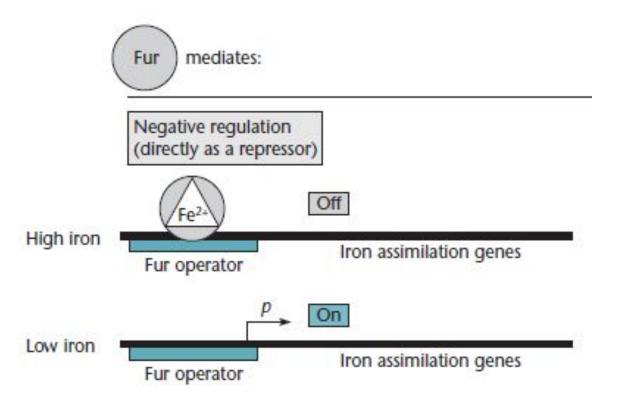
HET NPHK TO HET IN NINFOCOMULITY RETIROR! ATO


Heat shock response (ответ на тепловой шок)

При повышении температуры бактериальная клетка начинает синтезировать целый ряд так называемых белков теплового шока – в основном это шапероны и протеазы, щепящие неправильно сложившиеся белки. Но начинается все опять с необычной сигмы!

В норме синтез такой сигмыН выключен из-за шпильки, включающей в себя SD этой мРНК. Но она расплетается само по себе при повышении температуры, это термосенсор! И уж тогда сигмаН начинает синтезироваться в больших количествах, что, в свою очередь, разрешает синтез белков теплового шока со специальных сигмаН-промоторов.

Heat shock response (ответ на тепловой



Белок DnaK в нормальных условиях связывается с новосинтезированными белками и помогает им правильно складываться. Связывается он и с сигмойН (если температура уже понизилась, а этой сигмы еще полно), и это приводит к деградации сигмыН. А при повышенной температуре DnaK связывается только с неправильно сложенными белками и помогает им свернуться правильно, а заодно и оставляет в покое сигмуН, которая спокойно запускает экспрессию всего Нагрегулона

Регуляция метаболизма

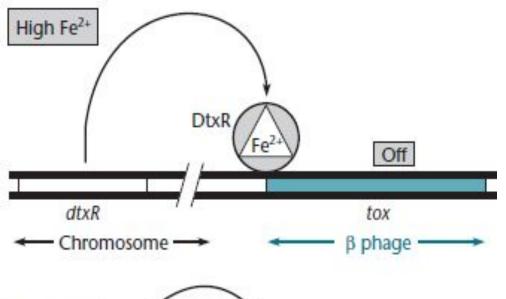
железа

Железо – важная штука для любого живого организма, и бактерии – не исключение. Однако с железом надо быть аккуратным – его избыток приводит к формированию супероксид-ионов из перекиси водорода, а это самый жуткий мутаген для клетки. Гены, вовлеченные в метаболизм железа, организованы в Fur-регулон.

Когда железа в клетке много, ионы Fe2+ связываются с белком Fur и превращают его в репрессор, действующий по классическому механизму на опероны генов ассимсиляции железа (мембранные транспортеры и т.д.).

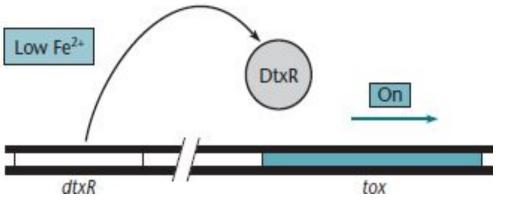
Когда железа мало, Fur находится в состоянии апорепрессора, и транскрипция ассимиляторов железа идет вполне активно.

Регуляция метаболизма


Low iron

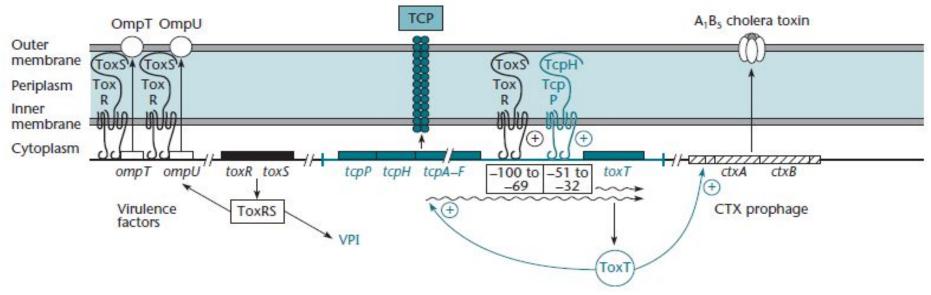
В частности, при малом количестве железа активируется транскрипция гена ryhB. Этот ген кодирует короткую РНК, которая при помощи РНКшаперона Hfq связывается с 5'участками мРНК белков, которые, наоборот, начинают активно синтезироваться при высоком содержании железа (по другим механизмам; здесь - мРНК Sod1, кодирующая супероксиддисмутазу, фермент конвертации перекиси водорода в супероксид-радикалы). Получается дцРНК, которая есть субстрат для деградации клеточными системам и РНК-интерференции.

Таким образом, то небольшое количество железа, которое имеется в клетке, становится доступно для белков, для которых оно и должно быть доступно в таких условиях, а белки, оперирующие с железом в больших количествах, исчезают – деградируют их мРНК.


Железозависимая регуляция у дифтерийных

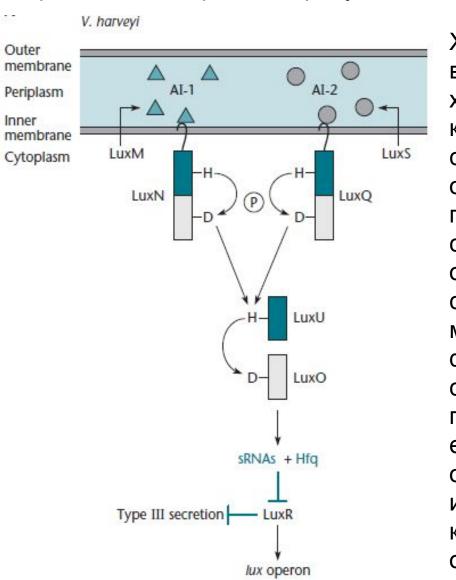
коринебактерий В клетках эукариот свободного железа практически не бывает – все оно связано с гемом или другими белками. Для любого внутриклеточного паразита снижение концентрации железа – сигнал того, что он попал в хозяйскую клетку. А значит, пора проявлять патогенность!

Пока железа много, оно связано с репрессором DtxR, подавляющим экспрессию гена дифтерийного токсина.


Когда железа становится мало, DtxR переходит в состояние апорепрессора, транскрипция начинается, токсин синтезируется, наступает адская дифтерия!

Любопытно, что ген токсина вообще-то принадлежит лизогенному профагу бета, а ген dtxR - из генома самой бактерии, которая без профага совершенно безобидна!

Регуляция патогенности холерного


Холерный вибрион так устроен, что его патогенность проявляется в тонкой кишке человека, вызывая сильнейшую диарею вплоть до летального исхода. В тонкой кишке (1) высокая осмолярность, (2) высокие количества некоторых аминокислот, которые в других местах, наоборот, редки. Совокупность этих факторов вызывает активацию патогенности.

Регуляцией занимаются белки ToxS и ToxR. Они не только активируют синтез факторов вирулентности (OmpT, OmpU) и собственно токсинов (CtxA, CtxB), но и помогают им встроиться во внешнюю мембрану, чтобы можно было успешно заражать несчастных хозяев.

Чувство

Бактерии могут узнавать о том, какое количество клеток того же вида их окружает, при помощи секреции в среду специальных малых молекул.

Хорошо изученнный случай – морской вибрион, кстати, близкий родственник холерного (у которого тоже есть чувство кворума). Эти вибрионы начинают светиться, когда их накапливается определенное количество в небольшом пространстве. Скорее всего, эти вибрионы – симбионты глубоководных рыб с органами освещения, но это еще не доказано. Они синтезируют и выпускают в среду две малых молекулы – гомосериновый лактон и фуранозилборатдиэфир (АІ1 и АІ2, соответственно). При их накоплении в периплазме (что может случиться только если они попали туда снаружи) запускается очень сложный и пока не очень хорошо изученный регуляторный каскад, который в конце концов приводит к активации luxоперона и синтезу молекул, испускающих свет видимого диапазона.