

Тема урока:

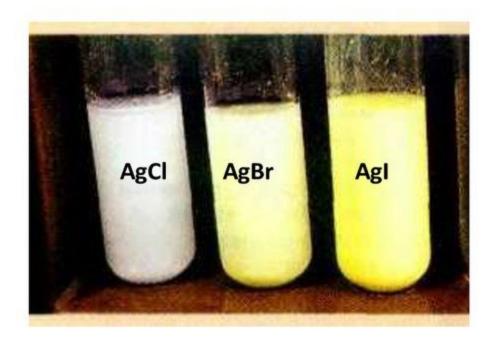
Определение галогенид - ионов в водном растворе.

Лабораторный опыт №8 «Изучение свойств галогенов и определение галогенид - ионов в водном растворе»

Цели урока:

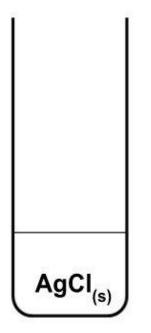
- вспомнить качественные реакции на различные анионы, в т.ч. на галогенид ионы;
- понимать термины по теме «Качественные реакции на ионы»;
- уметь писать ионные уравнения;
- составлять план по распознаванию галогенид ионов и провести эксперимент;
- оформить практическую работу;
- распознать растворы выданных веществ.

Критерии успеха

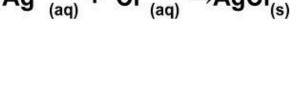

- знает тесты на анионы, в т.ч. галогенид
- ионы;
- понимает термины по теме «Качественные реакции на ионы»;
- правильно пишет ионные уравнения;
- составляет план по распознаванию галогенид ионов и проводит эксперимент;
- оформляет практическую работу;
- делает правильные выводы.

Анион	Реактив	Наблюдаемая реакция	
OH -	индикаторы: лакмус	синий	
	фенолфталеин	малиновый	
CO ₃ 2-	кислота, Н ⁺	выделение СО2	
CO ₂	известковая вода	белый осадок CaCO ₃	
F -	Ca ²⁺	белый осадок CaF ₂	
Cl	Ag [†]	белый осадок AgCl	
Br -	Ag [†]	желтоватый осадок AgBr	
1-	Ag [†]	желтый осадок Agl	
SO ₄ ²⁻	Ba ²⁺	белый осадок BaSO₄	
SO ₃ 2-	H ⁺	газ с резким запахом SO ₂	
PO ₄ ³	Ag [†]	желтый осадок Ag₃PO₄	
NO ₃	H₂SO₄ + Cu + нагреть	бурый газ NO ₂ , голубой раствор	
S 2-	Pb ²⁺	черный осадок PbS	
CrO ₄ ²⁻	Ba ²⁺	желтый осадок BaCrO₄	

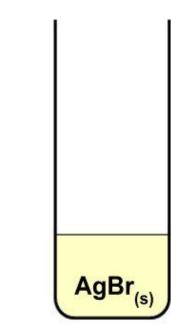
Терминология


Качественный анализ	Совокупность химических, физико-химических и	
	физических методов, применяемых для	
	обнаружения элементов, радикалов и соединений,	
	входящих в состав анализируемого вещества или	
	смеси веществ.	
Качественные реакции	Это реакции, позволяющие доказать наличие того	
	или иного вещества (иона) в среде или присутствие	
	функциональной группы в веществе.	
Качественный анализ в водных	Основан на ионных реакциях и позволяет	
растворах	обнаружить катионы или анионы.	
Наблюдаемые эффекты	Образование характерных осадков,	
	растворение вещества,	
	появление (изменение) окраски,	
	выделение газов,	
	изменение запаха,	
	окрашивание пламени.	

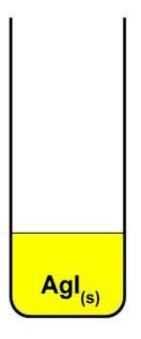
Качественные реакции на галогенид-ионы



- NaF + AgNO₃ → видимых изменений нет
- 2. $NaCI + AgNO_3 \rightarrow AgCI + NaNO_3$ (осадок белого цвета).
- 3. NaBr + AgNO₃ → AgBr | + NaNO₃ (осадок светло-жёлтого цвета)
- NaI + AgNO₃ → AgI↓ + NaNO₃ (осадок жёлтого цвета)
- 5. $2NaF + CaCI_2 \rightarrow CaF_2 \downarrow + 2NaCI$ (осадок белого цвета)


Silver Halide Precipitates

$$\mathsf{Ag^+}_{(\mathsf{aq})}$$
 + $\mathsf{CI^-}_{(\mathsf{aq})}$ $o \mathsf{AgCI}_{(\mathsf{s})}$



AgCI is SOLUBLE in dilute aqueous ammonia

$$\mathsf{Ag^+}_{(\mathsf{aq})}$$
 + $\mathsf{Br^-}_{(\mathsf{aq})}$ $o \! \mathsf{AgBr}_{(\mathsf{s})}$

AgBr is SPARINGLY SOLUBLE in dilute aqueous ammonia but soluble in concentrated

 $Ag^{+}_{(aq)} + I^{-}_{(aq)} \rightarrow AgI_{(s)}$

Agl is INSOLUBLE in both dilute and concentrated aqueous ammonia

lon	Silver Nitrate	Dilute Ammonia	Concentrated Ammonia
F ⁻	No visible change (clear solution)		
Cl-	White Precipitate	Colourless Solution	
Br	Cream Precipitate	Cream Precipitate	Colourless Solution
ŀ	Yellow Precipitate	Yellow Precipitate	Yellow Precipitate