

Сложные эфиры. Жиры.

Получение непредельных карбоновых кислот

А) Окисление непредельных альдегидов

$$CH_2=CH-C$$
 H
 $CH_2=CH-COOH$
 $Akpunoban_kucnoma$

Б) Дегидратация оксикислот

Получение карбоновых кислот

a)
$$HCOOCH_3 + H_2O \xrightarrow{\prime} HCOOH + CH_3OH$$
;

метилформиат

вода

муравьиная кислота

метанол

$$CH_2-C$$

$$O + H_2O \xrightarrow{\prime} HOOCCH_2CH_2COOH;$$

$$CH_2-C$$

$$O + H_2O \xrightarrow{\prime} HOOCCH_2CH_2COOH;$$

янтарный ангидрид

бензоилхлорид

r)
$$CH_3 - C - NH_2 + H_2O \xrightarrow{\prime} CH_3COOH + NH_3\uparrow;$$

ацетамид

уксусная кислота аммиак

д)
$$C_6H_5C\equiv N \xrightarrow{H_2O,\ t_1} C_6H_5C=NH_2 \xrightarrow{H_2O,\ t_2>t_1} C_6H_5COOH + NH_3 \uparrow$$
 бензойная кислота

$$CH_3$$
 O $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ $COOC_2H_5 + HOH $\rightarrow RCOOH + C_5H_5OH$$

 $RCOOC_2H_5 + R'OH \rightarrow RCOOR' + C_2H_5OH$

 $RCOOC_2H_5 + NH_3 \rightarrow RCONH_2 + C_2H_5OH$

 $CH_3-CH-C-CH_2-CH_3+O_2 \longrightarrow CH_3-C-CH_3+CH_3CH_2COOH$

 $CH_3-CH_2-C-CH_2-CH_3 + O_2 \longrightarrow CH_3CH_2COOH + CH_3COOH$

 $CH_3CHO + O_2 \longrightarrow CH_3COOH + H_2O$

- **1*.** Ананасовый ароматизатор напитков имеет формулу CH_3 — CH_2 — CH_2 — $COOC_2H_5$. Название этого сложного эфира:
 - а) этилформиат,
 - <u>б</u>этилбутират,
 - в) этилпропионат,
 - г) верного ответа среди перечисленных нет.
- 2*. Исключите лишнее вещество:
 - (а) стеарат натрия б) трипальмитат глицерина,
 - в) триолеат глицерина, г) тристеарат глицерина.

Обоснуйте свой выбор.

3*. Сложные эфиры плохо растворимы в воде и обладают меньшими температурами кипения по сравнению с изомерными им кислотами.

Причина этого:

- а) меньшая длина углеводородного радикала, связанного с карбоксильным атомом углерода;
- ботсутствие межмолекулярных водородных связей;
- в) наличие атома углерода в sp^2 -гибридном состоянии; г) верного ответа среди перечисленных нет.

- **4*.** Название вещества с формулой CH_3 —Cа) метилацетат, б) метилэтаноат, в) метиловый эфир уксусной кислоты, г) уксуснометиловый эфир,
- д) все перечисленные ответы верны.
- 5. В основе процесса переработки жидких растительных масел в твердые жиры лежит реакция:
 - а) гидрирования, б) гидратации, в) гидролиза, г) омыления.
- 4. Соединение какой структуры можно отнести к воскам?
 - $C_{15}H_{31}COOC_{16}H_{33}$, $C_{15}H_{31}COOC_{16}H_{33}$, $C_{15}H_{2}=CH-COOC_{3}H_{7}$. a) $CH_3COOC_{16}H_{33}$,
 - B) $C_{15}H_{31}COOC_2H_5$,
- **5.** Coothecute:
- вещество:
- 1) сложный эфир, 2) воск, 3) жир,
- - формула:

 - - б) C₁₅H₃₁СООС₁₈H₃₇

 - в) C₁₇H₃₅COONa **4** Γ) CH_3 — $COOCH_3$ (1

4) мыло;

исходные вещества:

6. Coothecute:

$$_{1}^{\text{CH}_{2}}$$
—O—CO— $_{17}^{\text{H}_{35}}$

CH₂—O—CO—C₁₇H₃₅
2) CH—O—CO—C₁₇H₃₅ + 3KOH \longrightarrow **a**

$$CH_{2}$$
— O — CO — $C_{17}H_{35}$
 CH_{2} — O — CO — $C_{17}H_{33}$
 CH — O — CO — $C_{17}H_{33}$ $+ 3H_{2}$ \longrightarrow \bigcirc

4) CH_3 — $COOH + C_2H_5OH$ \longrightarrow B

CH₂—O—CO—C₁₇H₃₃

название реакции:

а) омыление,

в) этерификация, Допишите уравнения реакций.

г) гидролиз.

б) гидрирование,

4. Coothecute:

группа веществ:

- 1) воски, 2) жиры,
- 3) мыла, 4) сложные эфиры;

природа вещества:

- а) сложные эфиры глицерина и высших карбоновых кислот,
- б) сложные эфиры высших карбоновых кислот и высших спиртов,
- в) натриевые и калиевые соли высших карбоновых кислот, г) производные карбоновых кислот, в которых атом водорода карбоксильной группы замещен на углеводородный радикал.
- 5. Дана цепочка превращений

тристеарат глицерина
$$\xrightarrow{+3\text{NaOH}}$$
 ... 1 $+$... 2 $+3\text{HNO}_3$ \downarrow $+$ HCl ... 3 ... 4

Укажите названия веществ 1—4:

- а) тринитрат глицерина,
- б) стеариновая кислота,
- в) стеарат натрия,
- г) глицерин.

Напишите уравнения реакций.