

# Лекция №6 ОПРЕДЕЛЕНИЕ УДЕЛЬНОЙ ПЛОТНОСТИ и ТЕМПЕРАТУРЫ РАСТВОРОВ

### Дисциплина:

«Физико- химические методы исследований и техника лабораторных работ»

1 курс 2 семестр

# Понятие «плотности веществ»

Удельная плотность выражается отношением массы вещества к его объему:

$$\rho = \frac{m}{V}$$

**г**де ρ — плотность; m — масса тела, ε; V — объем тела, см³.

Единицы измерения удельной плотности:

- в международной системе- кг/м<sup>3</sup>,
- в лабораторной практике- г/см<sup>3</sup>.

Плотность - одна из главных физических величин, характеризующих свойства вещества.

Увеличивается с повышением концентрации растворённого вещества.

Зависит от температуры. Стандартная температура для определения плотности=  $20^{\circ}$ С

Относительная плотность (или удельный вес) - это отношение плотности одного вещества к плотности другого, служащего эталоном (обычно это вода) при одинаковой температуре и давлении.

$$d = \frac{\rho}{\rho_B}$$

где 
$$\rho = \frac{m}{V} - плотность вещества;$$

 $\rho_{\rm B} = \frac{m_{\rm B}}{V_{\rm B}} -$  плотность дистиллированной воды при 4°C.

## Основные методы измерения плотности

Определение плотности основано на законе Архимеда: «Твёрдое тело при погружении в жидкость теряет в весе настолько, сколько весит вытесненная жидкость».

Выбор метода определения зависит от того плотность какого вещества (жидкого или твёрдого) надо определить.

# 1. Ареометрический метод

Приборы для измерения плотности жидкостейареометры, по своему назначению делятся на две группы:

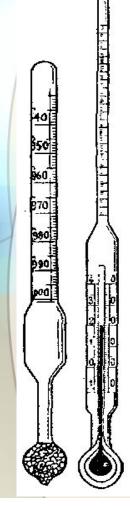
- 1) <u>ареометры (денсиметры</u>), которые применяют для измерения плотности различных жидкостей, имеют шкалу в единицах плотности урометры, нефтеденсиметры и т.д.;
  - 2) <u>ареометры для измерения концентрации</u> <u>раствора</u>, шкала которых градуирована в объемных или массовых процентахспиртометры, сахарометры, лактометры и др.

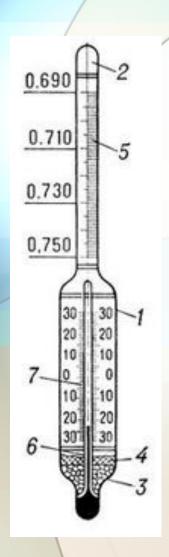
#### Достоинства:

- быстрота определения,
- возможность использования для анализа вязких жидкостей.

### Недостатки:

- невысокая точность (до 0,01)
- использование относительно большого количества анализируемой жидкости.





РИС. **Ареометры** 

### Устройство ареометра.

Стеклянный тонкостенный цилиндрический сосуд, расширяющийся внизу и имеющий на конце стеклянный резервуар, заполненный балластом (дробью, реже ртутью) для обеспечения устойчивости при погружении в жидкость.

В верхней части ареометра- шкала с делениями, соответствующими относительной плотности жидкости, и указанием температуры, при которой следует производить определение.

У наиболее точных ареометров шкала охватывает значения относительной плотности в пределах 0,2-0,4 единицы

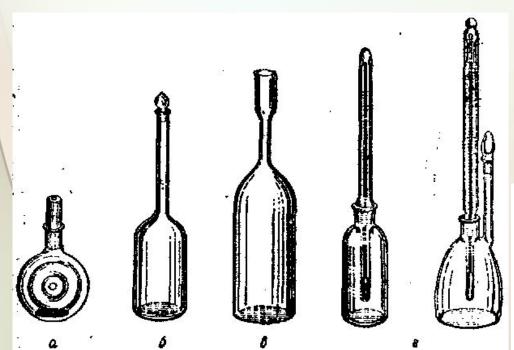


Градуировку ареометров производят при 20°С и относят к плотности воды при 4°С (именно при этой температуре плотность воды принята за 1 гр/см), поэтому показания шкалы дают величину относительной плотности (d).

Некоторые типы ареометров изготавливают со встроенным термометром, позволяющим одновременно с плотностью (концентрацией) измерять и температуру жидкости.

РИС. **Денсиметр (стеклянный)**: 1- полый корпус; 2- трубчатый стержень; 3-балласт; 4- связующее вещество; 5 - шкала плотности; 6- встроенный термометр; 7- шкала температуры.




ФОТО. Ареометры

# 2. Пикнометрический метод.

Более точный. Основан на взвешивании с помощью специального прибора- пикнометра.

**Устройство пикнометра.** Это емкость установленного объема, в которой взвешивается вещество.

Полученное значение корректируется с учетом выталкивающей способности воздуха, которая оказывает влияние на показания пикнометра при взвешивании.



#### РИС. 2. Пикнометры:

- а- Гей- Люссака,
- б- Рейшауера;
- в- Ренье;
- г- Менделеева



ФОТО. Пикнометры

# 3. Плотнометрический метод.

Плотнометр- электронный прибор для измерения плотности жидкости или газов.



### Устройство плотнометра.

Работает по принципу камертона.

В основе определения плотности лежит измерение резонансной частоты колебаний полой стеклянной трубки.

Эта частота изменяется, когда трубка наполнена образцом: чем выше масса образца, тем ниже частота колебаний.

Прибор измеряет эту частоту и переводит в плотность.

4. Определение плотности твёрдых тел по выталкивающей способности вспомогательной жидкости, плотность которой известна (вода или спирт) на специальных весах и приборах.

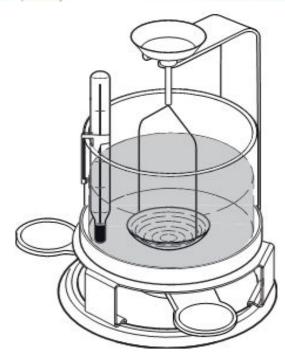



РИС. Прибор для определения плотности твёрдых тел

Применяют приборы разнообразной формы, в виде полых тел из металла или из стекла.

Снабжены чашечкой, на которую кладут гири и небольшие тела, плотность которых необходимо определить.

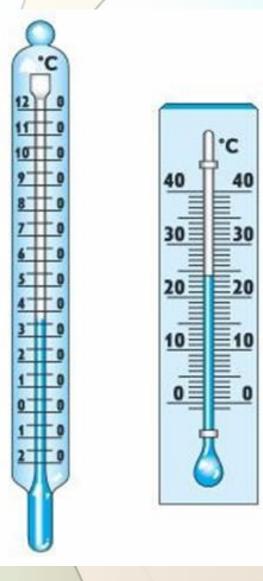
Твёрдое вещество (А) взвешивают на точных (например, аналитических) весах, сначала в воздухе, затем во вспомогательной жидкости (В).

Плотность вещества определяют по двум взвешиваниям, учитывая плотность воздуха:

#### Плотность:

$$\rho = \frac{A}{A-B} (\rho_0 - \rho_L) + \rho_L$$

Ро = Плотность вспомогательной жидкости


 $\rho_L$  = Плотность воздуха (0,0012 г/см<sup>3</sup>)

Р = Плотность образца

A = Взвешивание образца в воздухе

В взвешивание образца во вспомогательной жидкости:

# 3. Приборы для измерения температуры

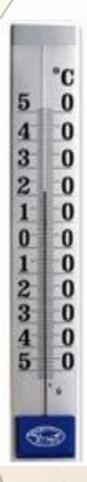


# 1. Жидкостный термометр:

• стеклянный баллон

• *капиллярная трубка* внутри него

• запасной резервуар заполнен термометрическими жидкостя-ми (ртуть, метиловый и этиловый спирт, керосин и др.)



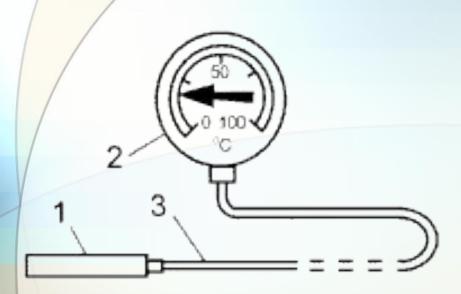

Принцип работы: объем жидкости внутри термометра изменяется при изменении температуры вокруг нее.

Жидкость, находящаяся в термометре при высокой температуре начинает увеличиваться в объеме, и подниматься вверх.

Шкала наносится прямо на поверхность капилляра или прикрепляется к нему снаружи.

Жидкостные стеклянные термометры применяют для измерения температур от - 30 до + 600°C.




#### Достоинства стеклянных термометров:

- простота применения,
- невысокая
- высокая точность измерения.

#### Недостатки:

- хрупкость стеклянного резервуара,
- плохая видимость шкалы (если не применять специальной увеличительной оптики),
- невозможность автоматической записи показаний, передачи показаний на расстояние и ремонта.

## 2. Манометрические термометры:



- термобаллон (1), заполненный газом, паром или жидкостью;
- гибкий капилляр (2)латунная трубка с внутренним диаметром в доли миллиметра;
- манометр (3) со шкалой.



Принцип действия основан на изменении давления газа, пара или жидкости в замкнутом объеме при изменении температуры.

Область измерения температур от -60 до +600°C.

Термобаллон помещают в измеряемую среду. При нагреве внутри него увеличивается давление, которое и измеряется манометром.

3. Термоэлектрические термометры (термопары). Принцип действия основан на свойстве двух разнородных проводников создавать термоэлектродвижущую силу при нагревании места их соединения - спая. Термопары являются первичными преобразователями температуры в термоэлектродвижущую силу- сигнал, удобный для дистанционной передачи.

Поэтому в измерительную цепь за термопарой может быть сразу включен измерительный прибор для измерения термоэлектродвижущей силы термопары.

Обычно применяют автоматические потенциометры.



**4. Электронные термометры**, позволяют измерять температуру дистанционно.

В контролируемом помещении располагается миниатюрный термочувствительный датчик, а в другой комнате индикатор, по шкале которого и отсчитывают температуру.

Способны измерять температуру в диапазоне от -50 до +100°C.

# Спасибо за внимание!!!

