Энергетический обмен

Метаболизм

обмен веществ и энергии

Внешний обмен

(поглощение и выделение веществ клеткой)

Внутренний обмен

(химические превращения веществ в клетке)

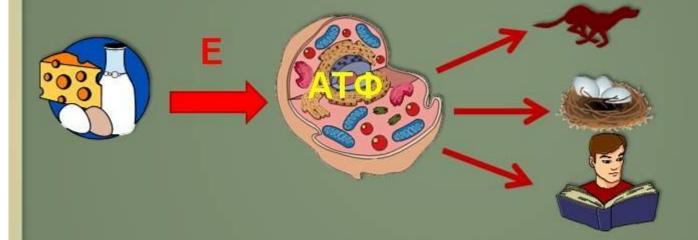
Пластический обмен

(ассимиляция или анаболизм)

Энергетический обмен

(диссимиляция или катаболизм) MyShared

Энергия, заключённая в химических связях углеводов, жиров и белков, непосредственно не может быть использована для выполнения той или иной работы в клетке


Поэтому вещества в процессе обмена веществ подвергаются расщеплению, а затем окислению.

Выделяющаяся энергия фиксируется в виде макроэргических связей в молекулах АТФ, которые являются универсальным источником энергии.

Живые клетки получают и преобразуют энергию с помощью ферментативных реакций.

Окислительное фосфорилирование:

 $AД\Phi + \Phi \longrightarrow AT\Phi$

Энергетический обмен совокупность реакций окисления органических веществ в клетке и синтеза богатых энергией молекул АТФ. Энергетический обмен -часть общего метаболизма клетки. Главную роль в нём играют митохондрии.

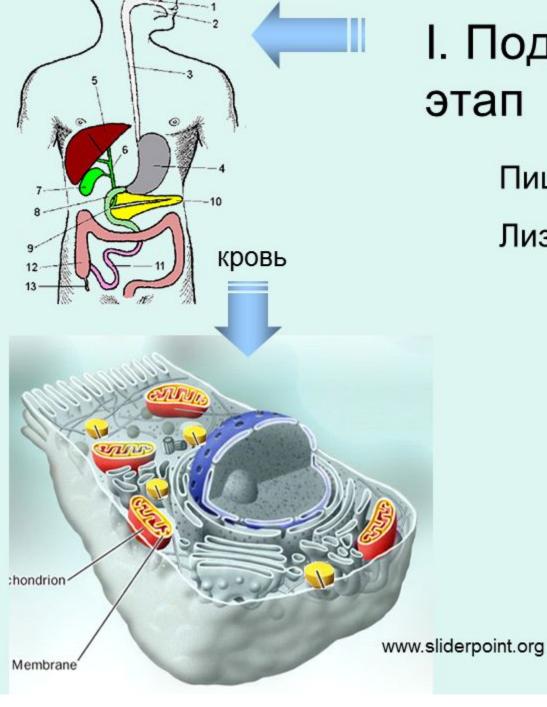
СХЕМА СТАДИЙ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА.

Сложные углеводы (гликоген С6Н11О5).

Простые углеводы (глюкоза С6Н12О6).

Молочная кислота С3Н6О3.

Подготовительный этап.


Бескислородный этап (гликолиз)

Этап полного кислородного расщепления (клеточное дыхание).

Этапы энергетического обмена

Подготовительный

- 1.Заключается в распаде белков, жиров и углеводов на составные части
- 2. У человека происходит в желудочно кишечном тракте под действием пищеварительных ферментов, при этом выделяется только тепловая энергия

I. Подготовительный этап

Пищеварительная система Лизосомы в клетках

Этапы энергетического обмена:

1. Подготовительный этап

Расщепление высокомолекулярных органических веществ до низкомолекулярных — <u>гидролиз</u>. Протекает в пищеварительном тракте, на клеточном уровне — в <u>лизосомах</u> при участии <u>гидролитических</u> ферментов. Вся энергия расходуется в виде <u>тепла</u>.

```
БЕЛКИ + H_2O — АМИНОКИСЛОТЫ + Q ЛИПИДЫ + H_2O — ЛИПАЗЫ ГЛИЦЕРИН + ЖИРНЫЕ КИСЛОТЫ + Q (ЖИРЫ) ПОЛИСАХАРИДЫ + H_2O — АМИЛАЗА ГЛЮКОЗА + Q (КРАХМАЛ, ГЛИКОГЕН) НУКЛЕИНОВЫЕ КИСЛОТЫ + H_2O — НУКЛЕОТИТЬ НУКЛЕОТИТЬ НО Shared
```

Второй этап

Гликолиз (бескислородный)

- 1. Осуществляется в гиалоплазме
- 2. С мембранами не связан
- 3. В нём участвуют ферменты
- 4. Расщеплению подвергается глюкоза
- 5. 60% энергии рассеивается в виде тепла
- 6. 40% энергии идёт на синтез АТФ
- 7. Образуется 2 АТФ

2. Гликолиз (брожение)

Бескислородное (анаэробное) расщепление и окисление глюкозы. Протекает в цитоплазме. Часть энергии запасается в виде АТФ (40%), остальная часть (60%) – в виде теплоты.

Молочнокислое брожение: (протекает в клетках тела животных и человека (мышечных), у молочнокислых бактерий (в основе получения кисломолочных продуктовйогуртов, сметаны и др.)

$$C_6H_{12}O_6 + 2 HAД^+ + 2 AД\Phi \longrightarrow 2C_3H_4O_3 + 2HAДH + 2 АТФ$$
 глюкоза ПВК — пировиноградная кислота (пируват) молочная кислота

Выводы:

Общая формула энергетического обмена веществ:

ГЛЮКОЗА
$$C_6H_{12}O_6+6O_2$$
 \longrightarrow $6H_2O+6CO_2+38$ молекул $AT\Phi=$ =1 520 кДж = 54% Q

Эта химическая энергия расходуется на процессы жизнедеятельности клетки – движение, рост, деление и т.д., взаимопревращаясь в механическую, электрическую, световую энергии.

46% Q - расходуется в виде тепла.

отпаны эперестического обмена			
	Подготовительный этап	Бескислородный этап <u>Гликолиз</u>	Кислородный этап
происходит цепление?	В органах пищеварения, в клетках под действием ферментов	Внутри клетки	В митохондриях
активизируется цепление?	Ферментами пищеварительных соков	Ферментами мембран клеток	Ферментами митохондрий
саких веществ цепляются инения клетки?	Белки — аминокислоты Жиры — глицерин и жирные кислоты Углеводы - глюкоза	Глюкоза $(C_6H_{12}O_6)$ 2 молекулы пировиноградной кислоты $(C_3H_4O_3)$ + энергия	Пировиноградная кислота до CO ₂ и H ₂ O
лько выделяется эгии?	Мало, рассеивается в виде тепла.	За счет 40% синтезируется АТФ, 60% рассеивается в виде тепла	Более 60% энергии запасается в виде АТФ
лько гезируется эгии в виде АТФ?		2 молекулы АТФ	36 молекул АТФ

Все организмы в зависимости от способа энергетического обмена делят на две группы:

организмы

Аэробные (большинство растений, животных, грибов, бактерий)	Анаэробные (некоторые животные, бактерии)		
1.Для осуществления энергетического обмена и нормальной жизнедеятельности необходим кислород.	1.Способные обходиться без кислорода .		
2.Энергетический обмен аэробов происходит в три этапа : - подготовительный; - бескислородный; - кислородный.	2.Энергетический обмен анаэробов происходит в два этапа : - подготовительный; - бескислородный.		

ммарное уравнение реакции энергетического обмена

$$C_6H_{12}O_6 + 2AД\Phi + 2H_3PO_4 \rightarrow 2C_3H_6O_3 + 2AT\Phi + 2H_2O_3H_6O_3 + 6O_2 + 36AД\Phi + 36H_3PO_4 \rightarrow 6CO_2 + 36AT\Phi + 42H_2O_3$$

$$H_{12}O_6 + 6O_2 + 38AД\Phi + 38H_3PO_4 \rightarrow 6CO_2 + 38AT\Phi + 44H_2O$$
 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + 38AT\Phi$

ГОГ: Энергия в виде 38АТФ

вод: Для образования энергии необходимы:

- Чистый воздух, т.е. кислород.
- Титательные вещества.
- Биологические катализаторы, т.е ферменты.
- Биологические активаторы, т.е. витамины.