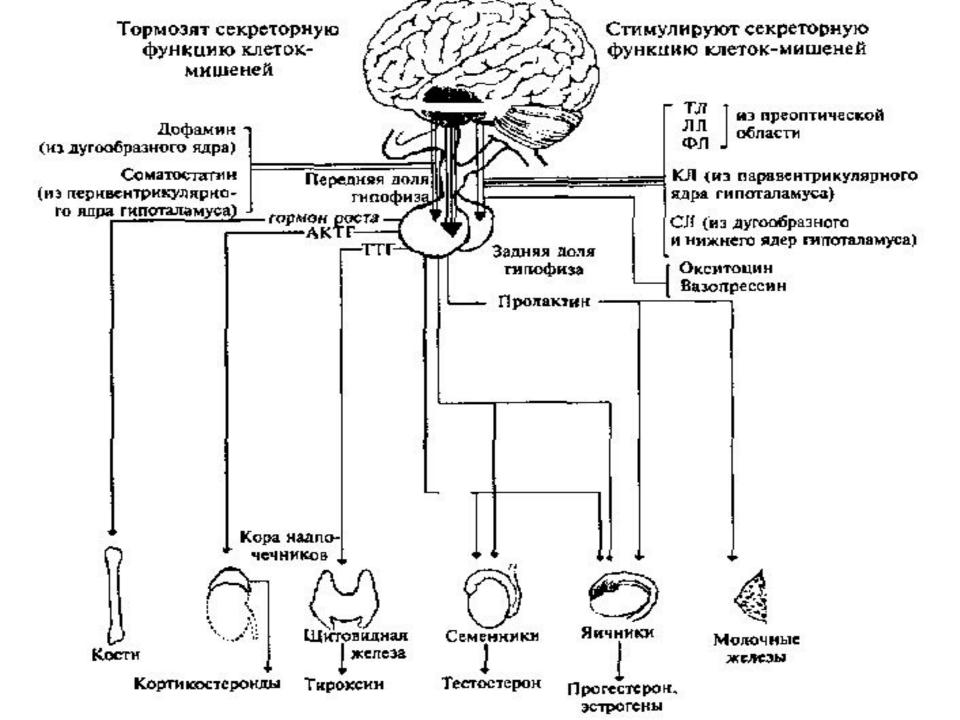

ГОРМОНЫ ГИПОТАЛАМО-ГИПОФИЗАРНОЙ СИСТЕМЫ

анатомическое строение гипоталамо-гипофизарной системы.



- 1 перекрест зрительных нервов, 2 портальная вена гипофиза, 3 туберальная доля аденогипофиза, 4 передняя доля аденогипофиза, 5 гипофизарная вена, 6 задняя доля (нейрогипофиз), 7а верхняя гипофизарная артерия, несущая кровь к первичной капиллярной сети срединного возвышения и вторичной капиллярной сети аденогипофиза
- 76 нижняя гипофизарная артерия, несущая кровь к нейрогипофизу, 8 инфундибулярная ножка, 9 срединное возвышение, первичная капиллярная сеть
- 10 аксоны нейроэндокринных клеток, образующие гипоталамо-гипофизарные тракты
- 11 нейроны крупноклеточных ядер гипоталамуса, 12 нейроны мелкоклеточных ядер гипоталамуса
- 13 вставочная доля гипофиза.

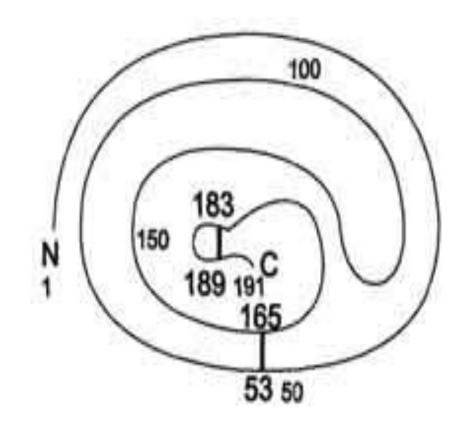
Гормоны гипоталамуса

Гипоталамический гормон	Структура	Функция
Тиреотропин-рилизинг-гормон	Пептид,	Стимулирует секрецию
(тиреолиберин, ТРФ)	3 а.к. ¹	тиреотропина и пролактина
Кортикотропин-рилизинг-гормон	Полипептид,	Стимулирует секрецию
(кортиколиберин, КРФ)	41 а.к.	кортикотропина
Гонадотропин-рилизинг-гормон	Полипептид,	Стимулирует секрецию ЛГ и ФСГ
(гонадолиберин, ГРФ)	10 а.к.	
Соматотропин-рилизинг-гормон	Полипептид,	Стимулирует секрецию
(соматолиберин, СРФ)	40 или 44 а.к.	соматотропина
Соматостатин (соматотропин-ингибирующий	Полипептид,	Ингибирует секрецию
гормон)	14 или 28 а.к.	соматотропина
Пролактолиберин ²		Стимулирует секрецию пролактина
Пролактостатин (дофамин) ³	Полипептид,	Ингибирует секрецию пролактина
	56 а.к.	

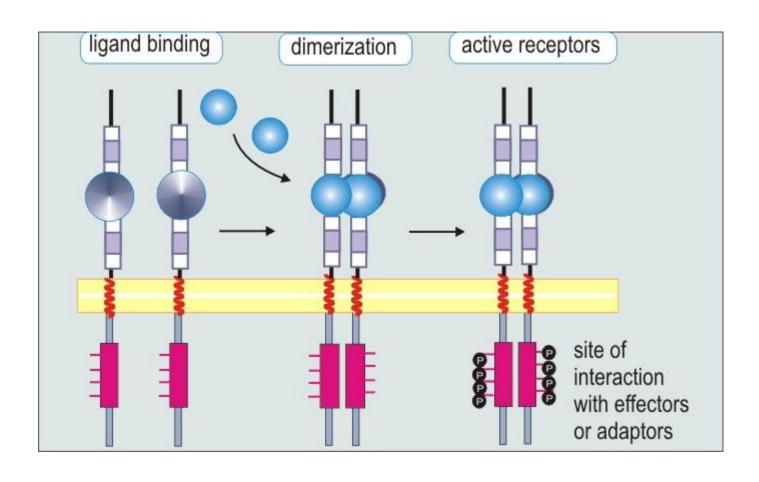
Гормоны аденогипофиза

• 1. Гормоны группы соматотропина

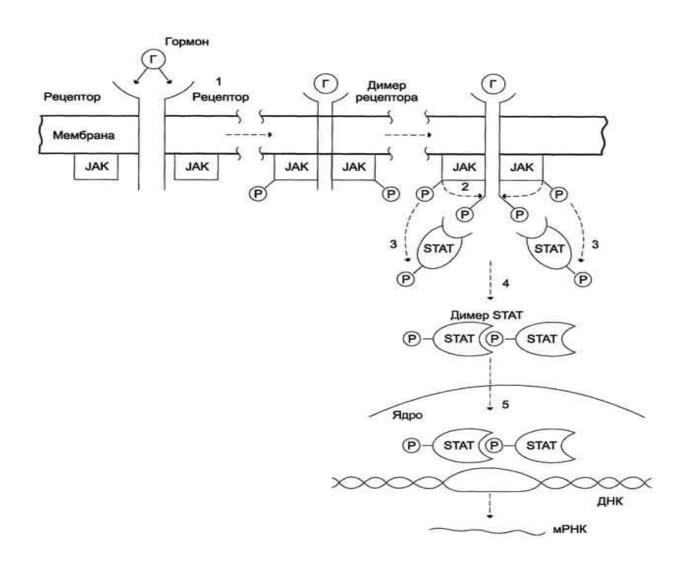
• 2. Гликопотеиновые гормоны


• 3. Пептиды семейства ПОМК

Гормоны группы соматотропина


- 1. Соматотропин
- 2. Пролактин
- 3. Плацентарный лактоген

Гормон роста у всех видов млекопитающих представляет собой одноцепочечный пептид с молекулярной массой 22 кД, состоящий из 191 аминокислотного остатка и имеющий 2 внутримолекулярные дисульфидные связи


• В крови присутствуют несколько изоформ, основная форма содержит 191 аминокислоту и имеет молекулярную массу 22124 Да. Пять генов гормона роста расположены в соседних локусах хромосомы 17.

РЕЦЕПТОР СОМАТОТРОПИНА

Внутриклеточное действие соматотропина

• Рецепторы гормона роста находятся в плазматической мембране клеток печени, жировой ткани, яичках, жёлтом теле, скелетных мышцах, хрящевой ткани, мозге, лёгких, поджелудочной железе, кишечнике, сердце, почках, лимфоцитах.

Физиологическое действие соматотропина

Сочетание анаболических и катаболических эффектов:

Первичные эффекты гормона роста кратковременны и инсулиноподобны.

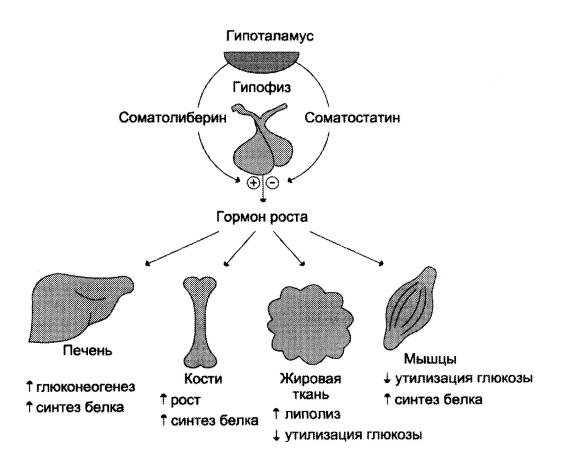
В дальнейшем проявляются более медленные (в основном, противоположные инсулину) эффекты: усиливается липолиз в жировой ткани, увеличивается концентрация жирных кислот в крови, стимулируется глюконеогенез.

- Под влиянием ГР усиливаются транспорт аминокислот в клетки мышц, синтез белка в костях, хрящах, мышцах, печени и других внутренних органах, увеличивается общее количество РНК, ДНК, стимулируется деление клеток.
- Многие эффекты ГР объясняются действием инсулинподобных факторов роста, (ИФР-1 и ИФР-2), образующихся под действием ГР в печени.

РГ – один из гормонов стресса

- Его действие направлено на обеспечение глюкозой ЦНС
- Под влиянием гормона роста увеличивается ширина и толщина костей, и одновременно с этим ускоряется рост других тканей, включая соединительную ткань, мыпщы и внутренние органы.

СТИМУЛИРУЮТ СЕКРЕЦИЮ СОМАТОТРОПИНА


- Основной стимулирующий эффект оказывает соматолиберин, основной тормозящий гипоталамический соматостатин
- стресс, физические упражнения, гипогликемия, голодание, белковая пища, аминокислота аргинин. Секретируется в импульсном режиме в зависимости от времени суток

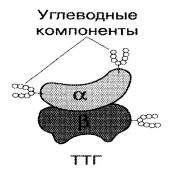
Основные гормоны аденогипофиза

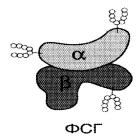
Гормон	Строение	Биологическая функция
Гормон роста (ГР),	Полипептид,	Стимулирует постнатальный рост скелета и
соматотропный гормон (СТГ)	191 а.к	мягких тканей. Участвует в регуляции
		энергетического и минерального обмена.
Тиреотропин,	Димер (αβ)	Стимулирует синтез йодтиронинов
Тиреотропный	α-полипептид,	
гормон (ТТГ)	96 а.к.	
	β-Полипептид,	
	112 а.к.	
Пролактин (ПРЛ)	Полипептид,	Стимулирует лактацию
,	197 а.к.	
Лютеинизирующий	α-Полипептид,	У женщин индуцирует овуляцию
гормон (ЛГ)	96 а.к.	У мужчин индуцирует синтез андрогенов в
	β-Полипептид,	клетках Лейдига
	121 а.к.	
Фолликулостимулирующий	α-Полипептид,	У женщин стимулирует рост фолликулов
гормон (ФСГ)	96 а.к.	У мужчин стимулирует сперматогенез
	β-Полипептид,	
	120 а.к.	
Кортикотропин,	Полипептид,	Стимулирует рост надпочечников и синтез
адренокортикотропный	39 а.к.	кортикостероидов
гормон (АКТГ)		
β-Липотропин (β-ЛТГ)	Полипептид,	Стимулирует липолиз
	02 ~	

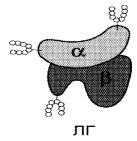
• Плацента продуцирует гормон (плацентарный лактоген), гомологичный по аминокислотному составу гормону роста и пролактину. Все 3 гормона имеют общие антигенные детерминанты и обладают ростстимулирующей и лактогенной активностью.

Биологическое действие гормона роста Основная функция- сохранение глюкозы для работы мозга

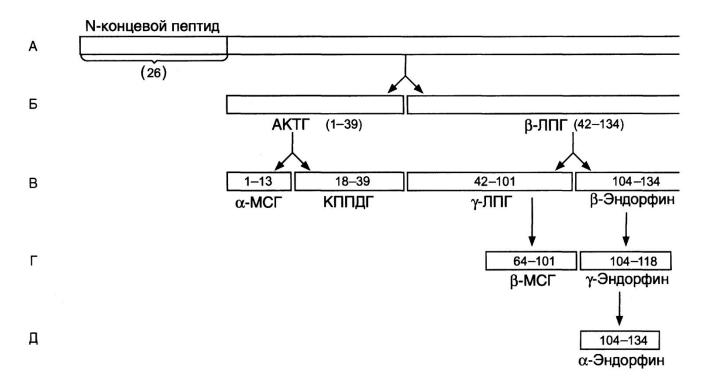
ологическое действие гормона роста.


Влияние соматотропина на метаболизм


- 1. Белковый обмен анаболическое (стимулирует транспорт аминокислот через плазматическую мембрану, усиливает биосинтез белка);
- 2. Углеводный обмен катаболическое (снижение периферической утилизации глюкозы и глюконеогенез в печени);
- 3. Липидный обмен катаболическое (стимулирует липолиз, выход жирных кислот и глицерина в кровь);
- 4. Минеральный обмен положительный баланс Са, Mg, Na, Cl, K, фосфата;
- 5. Пролактиноподобные эффекты


ГЛИКОПРОТЕИДНЫЕ ГОРМОНЫ АДЕНОГИПОФИЗА

- Тиреотропин, ЛГ и ФСГ гликопротеины. Тиреотропин с молекулярной массой около 30 кД синтезируется в тиреотрофных клетках передней доли гипофиза.
- Основная биологическая функция тиреотропина стимуляция синтеза и секреции йод-тиронинов (Т3 и Т4) в щитовидной железе. Трансдукция сигнала тиреотропина в клетки щитовидной железы происходит через рецепторы плазматической мембраны и активацию аденилатциклазы.


Гликопротеиновые гормоны аденогипофиза

Семейство пептидов ПОМК

Рис. 11-15. Пептидные гормоны, образующиеся из ПОМК. А — ПОМК состоит из 265 аминокислотных остатков (а.к.), включая N-концевой сигнальный пептид из 26 аминокислот; Б — после отщепления сигнального пептида полипептидная цепь рас щепляется на 2 фрагмента: АКТГ (39 а.к.) и β -липотропин (42–134 а.к); В, Г, Д — при дальнейшем протеолизе происходит обра зование α - и β -МСГ и эндорфинов. КППДГ — кортикотропиноподобный гормон промежуточной доли гипофиза.

Гормоны нейрогипофиза (синтезируются в гипоталамусе)

• Вазопрессин и окситоцин - нанопептиды со сходной структурой