
Overview

COVID-19 pandemic has resulted in millions of deaths and a social-economic crisis.

A worldwide effort was made to develop efficient vaccines for this disease.

A COVID-19 vaccine is a vaccine intended to provide acquired immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19).

Stages of Vaccine Development

Vaccine design involves the selection of platforms that includes viral, viral-vector, protein, nucleic acid, or trained immunity-based strategies. Its development initiates at a pre-clinical stage, followed by clinical trials when successful. Only if clinical trials show no significant evidence of safety concerns, vaccines can be manufactured, stored, and distributed to immunize the population.

So far, regulatory authorities

approved nine vaccines with

from many countries have

phase 3 results.

List of COVID-19 Vaccines

- Moderna, mRNA-1273.
- 2. Pfizer/BioNTech. BNT162b2.
- 3. Janssen (Johnson & Johnson) Ad26.COV2.S.
- 4. Oxford/AstraZeneca. AZD1222.
- 5. Sputnik-V (Gam-COVID-Vac)
- 6. Serum Institute of India. Covishield (Oxford/AstraZeneca formulation)
- 7. Sinopharm (Beijing) BBIBP-CorV (Vero Cells)
- 8. Sinovac. Corona Vac.
- 9. Novavax (NVX-CoV2373) *

^{*}This vaccine is in Phase 3 trials and has not been authorized by any country.

Vaccine Types (against COVID-19) and their Characteristics

Table 1. Summary of the characteristics of each vaccine platform.

Platform	Advantages	Disadvantages			
Live- attenuated	Elicit strong immune response	 Requires dedicated biosafety 			
	 Highly established 	 Risk of regaining virulence 			
	 Long-lasting protection 	 Causes reactogenicity 			
	• Do not need adjuvants				
Inactivated	Elicit strong immune response	• Lower immune response than live-attenuated			
	 Highly established 	 Needs adjuvants 			
	• Less reactogenicity than live-attenuated				
Viral-vectors	• Precise immune response	Variable immunogenicity			
	Safer than live-attenuated and inactivated vaccines	 Can be influenced by preexisting vector antibodies 			
		Risk of genomic integration			
Protein-based	No biosafety concerns	Needs adjuvants			
	Strong antibody immunogenicity	May not carry glycans similar to the viral proteins			
	• Precedent of successful vaccines				
	Can be formulated into virus-like particles				

DNA	 No biosafety concerns 	Variable immunogenicity			
	• Elicit reasonable immune response	Risk of genomic integration			
	• Long-term stability				
	Can be multivalent				
RNA	No biosafety concerns	Possible inflammatory reaction			
	 No risk of genomic integration 	May require ultra-cold			
	Elicit strong immune	storage			
	response	Require delivery by lipid			
	Can be multivalent	nanoparticles			
Trained	Can boost the innate	Efficacy and mechanisms			
immunity- based	immune response	still not well understood			
based	Already available	No induction of adaptive immunity memory			
		Reversible and short- durable			

Some Vaccine Types and Their Popular Examples

1. mRNA vaccines

- a. Pfizer-BioNTech
- b. Moderna

2. Adenovirus vector vaccines

- a. Oxford-AstraZeneca
- b. Sputnik V
- c. Janssen

3. Subunit vaccines

- a. EpiVacCorona
- b. Novavax COVID-19 vaccine,

4. Inactivated coronavirus vaccines

- a. China: CoronaVac, BBIBP-CorV, and WIBP-CorV
- b. India: Covaxin
- c. Russia: CoviVac

Additional types of vaccines that are in clinical trials include virus-like particle vaccines, multiple DNA plasmid vaccines, at least two lentivirus vector vaccines, a conjugate vaccine, and a vesicular stomatitis virus displaying the SARS-CoV-2 spike protein.

Overview of some COVID-19 vaccines

Pfizer-BioNTech

Type: mRNA vaccine

For ages: People 12 years and older

Number of Shots: 2 shots Given 3 weeks (21 days) apart

When Fully Vaccinated: 2 weeks after your second shot

As far as the Delta variant, two studies reported by Public Health England that have not yet been peer reviewed showed that full vaccination after two doses is 88% effective against symptomatic disease and 96% effective against hospitalization.

Additional Dose: Recommended for moderately to severely immunocompromised people, given 4 weeks after second shot

Booster Dose: Recommended for some people who are at higher risk for COVID-19 exposure or severe illness, given 6 or more months after second shot

Efficiency: 95%

Common side effects: Chills, headache, pain, tiredness, and/or redness and swelling at the injection site, all of which generally resolve within a day or two of rest, hydration, and medications like acetaminophen. On rare occasions, the vaccine has appeared to trigger anaphylaxis.

Moderna

Type: mRNA vaccine

For ages: People 18 years and older

Number of Shots: 2 shots given 4 weeks (28 days) apart

When Fully Vaccinated: 2 weeks after your second shot

In June 2021, Moderna reported that studies showed its vaccine is effective against the Beta, Delta, Eta, and Kappa variants, although it did show it to be about two times weaker against Delta than against the original virus.

Additional Dose: Recommended for moderately to severely immunocompromised people, given 4 weeks after second shot

Booster Dose: Not recommended at this time

Efficiency: 94%

Common side effects: Chills, headache, pain, tiredness, and/or redness and swelling at the injection site, all of which generally resolve within a day or two. On rare occasions, it has appeared to trigger anaphylaxis

Johnson & Johnson's Janssen

Type: Adenovirus viral vector vaccine

For ages: People 18 years and older

Number of Shots: 1 shot

When Fully Vaccinated: 2 weeks after your shot

Additional Dose: Not recommended at this time

Booster Dose: Not recommended at this time

Efficiency: 64.7%

efficacy against the original strain of the virus, although one recent study suggested that the J&J vaccine is less effective against Delta.

Johnson & Johnson reported effectiveness

against the Delta variant, showing only a small drop in potency compared with its

Common side effects: Fatigue, fever headache, injection site pain, or myalgia (pain in a muscle or group of muscles), all of which generally resolve within a day or two. It has had noticeably milder side effects than the Pfizer and Moderna vaccines, according to the FDA report released in late February. No one suffered an allergic reaction in clinical trials for the vaccine, according to the company.

Covishield

Type: Viral vector vaccine

For ages: People 18 years and above

Number of shots: 2 doses

Efficiency: 81.3 %

As far as the Delta variant, two recent studies (neither has been peer-reviewed) showed, respectively, that full vaccination after two doses is 60% effective against symptomatic disease and 93% effective against hospitalization.

Common side effects: Tenderness, pain, warmth, redness, itching, swelling or bruising at the injection site, all of which generally resolve within a day or two. Rare complication are blood clots.

Sputnik V

Type: Adenovirus viral vector vaccine

For ages: People 18 years and above

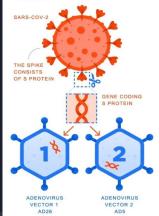
Number of shots: 2 shots given 3 weeks (21 days) apart

When Fully Vaccinated: 2 weeks after second shot

Efficiency: 91.6 %

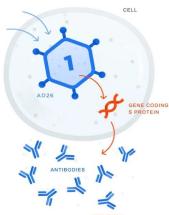
Side effects: Pain, redness, or swelling at the site of injection, Asthenia (lack of energy / abnormal physical weakness), Fatigue, Body and muscle pain, Cough and Sore throat, Runny nose, Fever and Chills, Nausea and Vomiting, Diarrhea, Headache

Sputnik V is around 83% effective against the Delta variant of coronavirus, according to the latest studies



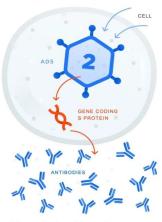
Two-vector vaccine against coronavirus

Vector creation


A vector is a virus that lacks a gene responsible for reproduction and is used to transport genetic material from another virus that is being vaccinated against into a cell. The vector does not pose any hazard to the body. The vaccine is based on an adenoviral vector which normally causes acute respiratory viral infections

A gene coding Sprotein of SARS-COV-2 spikes is inserted into each vector. The spikes form the "crown" from which the virus gets its name. The SARS-COV-2 virus uses spikes to get into a cell

First vaccination

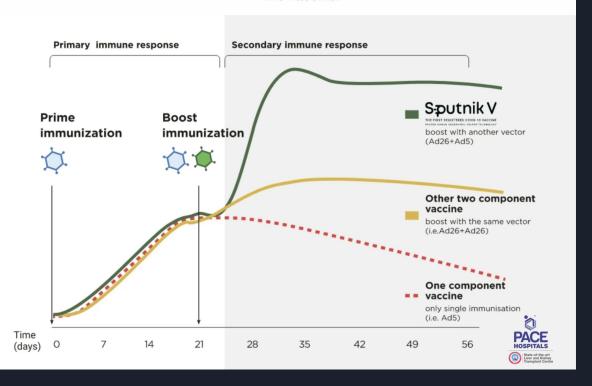

Vector with a gene coding S protein of coronavirus gets into a cell

The body synthesizes S protein, in response, the production of immunity begins

Second vaccination

Repeated vaccination takes place in 21 days

The vaccine based on another adenovirus vector unknown to the body boosts the immune response and provides for long-lasting immunity


The use of two vectors is a unique technology of the Gamaleya Center making the Russian vaccine different from other adenovirus vector-based vaccines being developed globally

Mechanism of Action

Sputnik V (Gam-COVID-Vac) is based on safe and effective human adenovirus vector platform using two different adenoviral vectors - Adenovirus 26 (Ad26) and Adenovirus 5 (Ad5) as an expression of SARS-CoV-2 spike protein gene.

Two different types of human adenoviruses as vectors (rAd26 and rAd5) for the first and second vaccination, boosting the effect of the vaccine.

Immune Response graph after administration of Sputnik V

 \equiv

Table 2Latest information on COVID-19 vaccines with approvals and phase 3 clinical trial results.

Developer country	Developer	Vaccine name	Strategy	Regimen	Efficacy	Storage	Countries approvals	Latest publication
United States and Germany	Pfizer-Biotech	BNT162b2	mRNA	Two- dose	95 %	−80 to -60 °C	79 approvals (US, UK, EU, AR, AU, others)	Polack et al., 2020
United States and Germany	Janssen	Ad26.COV2.S	Ad26	One- dose	74.4 % (US), 64.7 % (LatAm), 52.0 % (ZA)	2 to 8 °C	35 approvals (US, EU, CA, ZA, others)	Oliver et al., 2021
United States	Moderna	mRNA-1273	mRNA	Two- dose	94.0 %	−25 to -15 °C	41 approvals (US, UK, EU, IL, others)	Baden et al., 2021
United Kingdom and Sweden	Oxford- AstraZeneca	AZD-1222	ChAdOx1	Two- dose	70.4 %	2 to 8 $^{\circ}\text{C}$	81 approvals (UK, EU, BR, IN, MA, others)	Voysey et al., 2021
Russia	Gamaleya	Sputnik-V	Ad26, Ad5	Two- dose	91.6 %	−18 °C	55 approvals (RU, AR, AE, GN, others)	Logunov et al., 2021
China	CanSino	Ad5-nCoV (Convidecia)	Ad5	One- dose	NA	NA	4 approvals (CN, HU, MX, PK)	Zhu et al., 2020
China	Sinopharm	BBIBP-CorV	Inactivated	Two- dose	NA	2 to 8 $^{\circ}\text{C}$	27 approvals (BH, EG, HU, IQ, PE, CS, AE, others)	Xia et al., 2021
China	Sinovac	CoronaVac	Inactivated	Two- dose	50.4 %	2 to 8 $^{\circ}\text{C}$	19 approvals (BR, CL, CN, ID, TR, others)	Zhang et al., 2021
India	Bharat Biotech	BBV152 (Covaxin)	Inactivated	Two- dose	NA	2 to 8 $^{\circ}\text{C}$	5 approvals (IN, IR, MA, NP, ZW)	Ella et al., 2021

AR: Argentina; AE: United Arab Emirates; AU: Australia; BH: Bahrain; BR: Brazil; CA: Canada; CL: Chile; CN: China; EG: Egypt; EU: European Union; GN: Guinea; HU: Hungary; ID: Indonesia; IL: Israel; IN: India; IR: Iran; IQ: Iraq; LatAm: Latin American; MA: Morocco; MA: Mauritius; MX: Mexico; NP: Nepal; PE: Peru; PK: Pakistan; RU: Russia; TR: Turkey; UK: United Kingdom; CS: Republic of Serbia; ZA: South Africa; ZW: Zimbabwe; LatAm: Latin America.

NA: Not available.

Conclusion

COVID-19 vaccines are crucial tools in the pandemic response and protect against severe disease and death. Vaccines provide at least some protection from infection and transmission, but not as much as the protection they provide against serious illness and death.

Vaccines are likely staying effective against variants because of the broad immune response they cause, which means that virus changes or mutations are unlikely to make vaccines completely ineffective. One of the best ways of guarding against new variants is to continue applying tried-and-tested public health measures and rolling out vaccines.

Thank you for your attention!