
Электрический ток и его действия

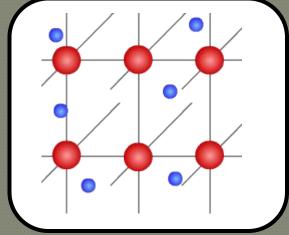
Электрический ток Тепловое действие тока Магнитное действие тока Химическое действие тока Сила тока

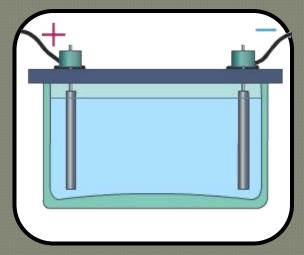
Что произойдет, если заряженные тела соединить проводником?

Что можно сказать о движении зарядов?

Какие заряды перемещаются в проводнике?

Что нужно сделать, чтобы лампочка горела постоянно?

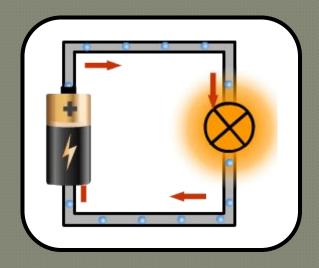




Какие заряды перемещаются в проводниках?

В металлах перемещаются свободные электроны

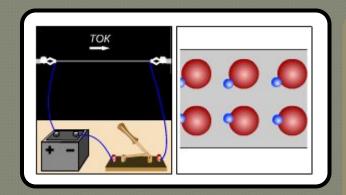
В жидкостях перемещаются «+» и «-» ионы



Электрический ток

Элекаковчестримеский ток? упорядоченное движение заряженных частиц Пря выкужсуровованих существуети двабереный товобофные заряды и электрическое поле, созданное источником тока.

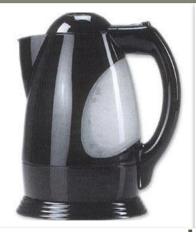
Влакоринаефавленикинадравлен по двежтенино окоможиктельных зарядов, т.е. от «+» источника к «-»



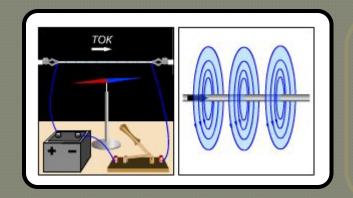
Тепловое действие тока

Каковипрелынаен агревания вравидей в тектронами. Амплитуда колебаний ионов увеличивается, проводник нагревается.

Где применяется это явление?



Применение теплового действия тока



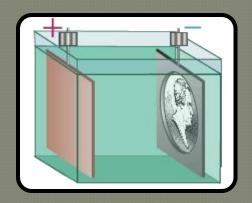
выхо Д

Магнитное действие тока

Венежувана врады ехадавым магниты все дейсе вижной вижной видействует на постоянные магниты, ферромагнетики или на другой ток.

Где применяется это явление?

Применение магнитного действия тока



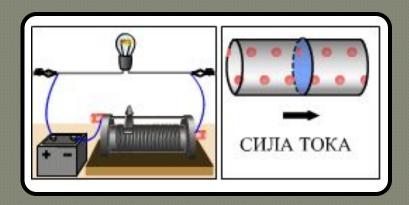
Химическое действие тока

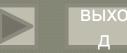
Пачемусьть квоторживы раменты в теля явлено недостающие электроны и превращаются в нейтральные атомы

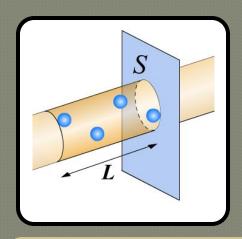
Где применяется это явление?

Химическое действие тока

Химическое действие тока применяется для металлизации, никелирования, получения алюминия




Сила тока


Иниченосвавноситы дей воивность дей катвые изментриченто по на заряда да, проходящего по цепи 6 1 с.

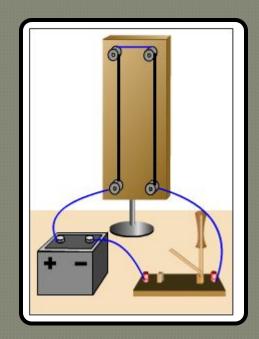
Количественной мерой интенсивности тока является СИЛА ТОКА: Да

 $I = \frac{\Delta q}{\Delta t}$

Сила тока

За время Δt заряженные частицы проходят расстояние $L = u_{cpedh} \Delta t$. Следовательно, за это время через сечение пройдет заряд из объема, выделенного на

$$\Delta q = N \cdot q_0 = n \cdot \Delta V \cdot q_0 = n \cdot S \cdot L \cdot q_0 = n \cdot S \cdot u_{cpe\partial_H} \cdot \Delta t \cdot q_0$$


$$I = \frac{\Delta q}{\Delta t} = \frac{n \cdot S \cdot u_{cpedh} \cdot \Delta t \cdot q_0}{\Delta t} = q_0 \cdot n \cdot S \cdot u_{cpedh}$$

$$I = q_0 \cdot n \cdot S \cdot u_{cpedh}$$

Единицы измерения силы тока

В 1948 г. было предложено определять единицы силы тока по магнитному взаимодействию:

1 А – это сила тока, при которой два параллельных проводника длиной 1м, расположенные на расстоянии 1м друг от друга, взаимодействуют с силой 2·10⁻⁷ ! !.

