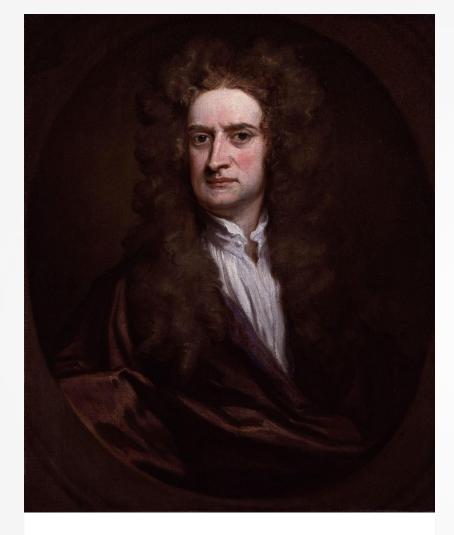
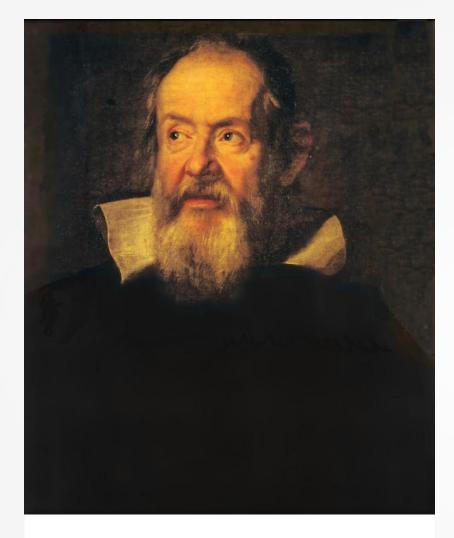


11.11.2020 г.


В конце пятнадцатого века астроном Тихо Браге занимался исследованием движения планет.

Тихо Браге 1546–1601 гг.


Иоганн Кеплер установил законы движения планет вокруг Солнца.

Иоганн Кеплер 1571–1630 гг.

Исаак Ньютон 1643–1727 гг.

Исаак Ньютон объединил разнородные явления: падение тел на Землю, обращение Луны вокруг нашей планеты, приливы и отливы, обосновав утверждение, что все они одной природы.

Галилео Галилей

<u> 1564 1642 гг.</u>

Гениальная догадка Галилея состоит в том, что он предположил, что силы притяжения существуют между всеми телами.

Второй закон Ньютона

$$a = \frac{F}{m}$$

$$F = ma$$

Третий закон

Силы, с которыми тела действуют друг на друга, равны по модулю и противоположны по направлению.

$$F \sim m$$

$$\vec{F}_1 = -\vec{F}_2$$

Исаак Ньютон 1643–1727 гг.

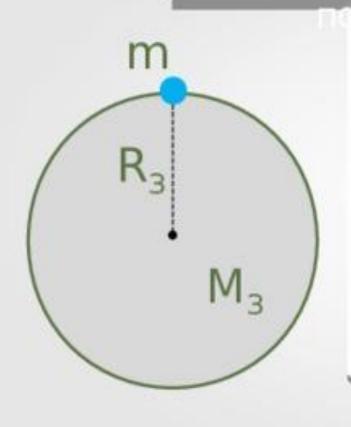
Исаак Ньютон предложил, что сила взаимного притяжения зависит от расстояния между телами.

Закон всемирного

тяготения

где **Г** — расстояние между центрами тел

$$I_1 = I_2$$
и $I_1 = I_2$ — массы тел


-- коэффициент, который называется постоянной всемирного тяготения или гравитационной постоянной

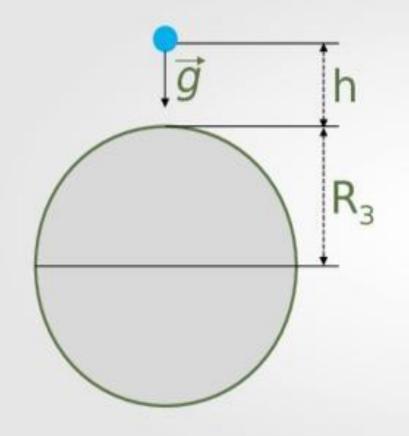
Открытие значения гравитационной постоянной принадлежит английскому ученому Генри Кавендишу.

Закон всемирного тяготения для тела, находящегося на

$$F = G \frac{M_3 m}{R_3^2}$$

где G- гравитационная постоянная

 M_3 — масса Земли


m— масса тела

 R_3 — радиус Земли

 $gm \approx G \frac{M_3 m}{R_3^2}$

 $g \approx G \frac{M_3}{R_3^2}$

$$g \approx G \frac{M_3}{(R_3 + h)^2}$$

Домашнее задание:

п. 15,16, стр.67 упр.16 №1,3,5.