

Математический диктант

Вариант 1

1. Является ли показательной функция:

$$y = 5^x + 2?$$

- 2. Верно ли, что областью определения показательной функции является R?
- 3. Является ли убывающей функция $y = 2^x$?
- 4. Верно ли, что показательная функция $y = a^x$ принимается наибольшее значение в некоторой точке x_0 ?
- 5. Представить в виде степени:

 $3^{-2} \cdot 81$

Вариант 2

- 1. Является ли показательной функция: $y = x^5 + 2?$
- 2. Верно ли, что график показательной функции проходит через точку с координатами (0;1)?
- 3. Является ли возрастающей функция $y = (0,3)^x$?
- 4. Верно ли, что показательная функция $y = a^x$ принимается в некоторой точке значение равное нулю?
- 5. Представить в виде степени:

 $2^{-2} \cdot 32$

Проверка

Вариант 1	Вариант 2		
1. Да	1. Нет		
2. Да	2. Да		
3. Нет	3. Нет		
4. Нет	4. Нет		
5.3^2	5.2^3		

1-2 ответа — «2», 3 ответа — «3», 4 ответа — «4», 5 ответов — «5»

Вычислите

a)
$$10^4 = 10000$$

$$6) 5^{-2} \cdot 5^4 = 25$$

б)
$$5^{-2} \cdot 5^4 = 25$$

в) $3^3 : 2^{-2} = 108$

$$\Gamma$$
) $(2^3)^2 = 64$

$$\Gamma$$
) $(2^3)^2 = 64$
д) $10^{-3} = 0,001$
е) $758^0 = 1$

e)
$$758^0 = 1$$

ж)
$$8^{\frac{1}{3}} = 2$$

$$3) 27^{\frac{2}{3}} = 9$$

$$\mathbf{u})\left(\frac{1}{9}\right)^{2} = 81$$

$$\kappa) \left(\frac{1}{2}\right)^{-3} \cdot 2^3 = 64$$

Выберите возрастающие, убывающие функции:

$$1.y = 4^x$$

$$2y = \left(\frac{1}{2}\right)^x$$

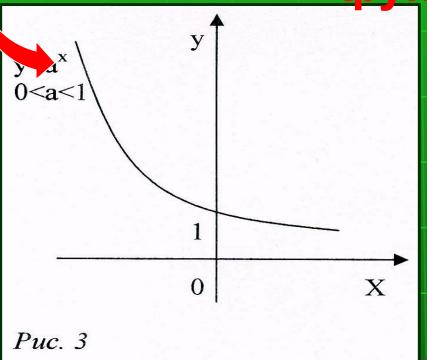
$$^{3}y = 3^{x}$$

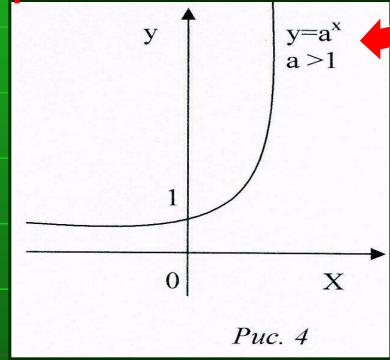
$$^{4}y = (0,1)^{x}$$

$$5y = (\frac{4}{7})^{-x};$$

6.
$$y = 2^{-x}$$
;

7.
$$y = (\frac{2}{3})^x$$
;


8.
$$y = -0.9^x$$


9.
$$y = \left(\sqrt{5}\right)^x$$

10.
$$y = \left(\frac{1}{3}\right)^x$$

Графики убывающей и возрастающей показательной

функции

Показательное уравнение – это уравнение, в котором неизвестное содержится в показателе степени.

Методы решения показательных уравнений

Алгоритм решения показательных уравнений

- 1. Уравниваем основания степеней во всех слагаемых, содержащих неизвестное в показателе степени.
- 2. а) Если показатели степеней отличаются только постоянным слагаемым, то выносим за скобки общий множитель.
 - б) Если показатель одной из степеней по модулю 2 раза больше показателя другой, то вводим новую переменную.
- 3. Графическое решение уравнения сводится к построению графиков функций левой и правой частей уравнения, нахождению по рисунку примерного значения абсциссы точки пересечения графиков. Если возможно, с помощью проверки уточняется корень уравнения.

Метод приведения степеней к одному основанию

$$\left(\frac{1}{4}\right)^{3-2,5x} = 8^{x-\frac{1}{3}}$$

$$(2^{-2})^{3-2,5x} = (2^3)^{x-\frac{1}{3}}$$

$$2^{-6+5x} = 2^{3x-1}$$

$$-6+5x = 3x-1$$

$$5x-3x = 6-1$$

$$2x = 5$$

$$x = 2,5$$
Other: 2,5

Метод вынесения общего множителя за скобки

$$3^{x+2} + 3^x = 90$$
 $3^x \cdot 3^2 + 3^x = 90$
 $3^x(3^2 + 1) = 90$
 $3^x \cdot 10 = 90$
 $3^x = 90 : 10$
 $3^x = 9$
 $3^x = 3^2$
 $x = 2$
Other: 2

Метод введения новой переменной

$$100^{x} - 11 \cdot 10^{x} + 10 = 0$$
 $(10^{x})^{2} - 11 \cdot 10^{x} + 10 = 0$
Пусть $10^{x} = y$
 $y^{2} - 11y + 10 = 0$
Д = $121 - 40 = 81$
 $y_{1} = 10;$
 $y_{2} = 1$
 $y_{1} = 10;$
 $y_{2} = 1$
 $y_{3} = 10;$
 $y_{4} = 10;$
 $y_{5} = 10$
 $y_{7} = 10$
 $y_{7} = 10$
 $y_{8} = 10$

Метод почленного деления

$$3^{x+5} = 7^{x+5}$$

$$3^{x+5} = 7^{x+5} | : 7^{x+5}$$

$$3^{x+5} = 1$$

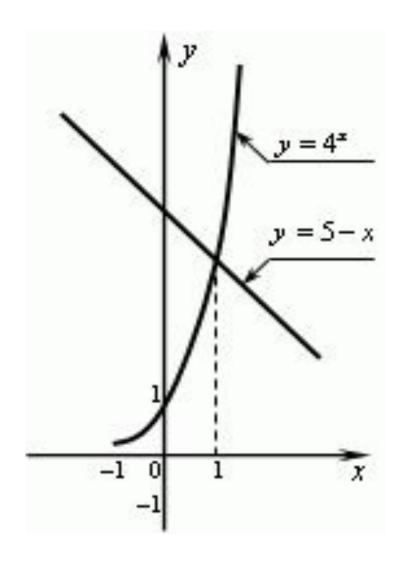
$$\left(\frac{3}{7}\right)^{x+5} = \left(\frac{3}{7}\right)^{0}$$

$$x + 5 = 0$$

$$x = -5$$
Other: -5

Графический метод

$$4^{x} = 5 - x$$


В одной координатной плоскости строят графики функций у = 4^x и у = 5-х Решением уравнения является абсцисса точки пересечения графиков функций

$$y = 4^x$$
 и $y = 5-x$

Проверка: $x = 1, 4^1 = 5-1,$

4 = 4 (верно)

Ответ: x = 1.

Решите уравнение:

$$3^{x} = 1$$

$$\left(\frac{1}{7}\right)^{x}=49$$

$$6^{x} = -6$$

Страничка ЕГЭ

Решите уравнения (Часть В):

1)49
$$x + 1 = \left(\frac{1}{7}\right)^{x}$$
2)2 $x + 3 \cdot 2^{x - 4} = 76$
3)9 $x - 4 \cdot 3^{x} + 3 = 0$

Тест « Решите уравнения»

1 вариант

$$2^{4-2x} = 64$$

$$5^{x-7} = \frac{1}{125}$$

$$9^{-5+x} = 729$$

$$\left(\frac{1}{2}\right)^{x-8} = 2^x.$$

$$2^{3+x} = 0, 4 \cdot 5^{3+x}$$

2 вариант

$$8^{9-x} = 64^x$$

$$\left(\frac{1}{3}\right)^{x-8} = \frac{1}{9}$$

$$\left(\frac{1}{2}\right)^{6-2x} = 4$$

$$\left(\frac{1}{8}\right)^{-3+x} = 512.$$

$$9^{2+5x} = 1,8 \cdot 5^{2+5x}$$

Проверь себя

Вариант 1

Вариант 2

№ п/п	ответы	№ п/п ответы		
1.	-1	1. 3		3
2.	4	2.	10	
3.	8	3.	4	
4.	4	4.	0	
5.	-2	5.	-0,2	

Указать способы решения показательных уравнений.

Приведение к одному основанию

Вынесение общего множителя за скобки Замена переменного (привед. к квадратному)

$$5^{x+1} + 5^x + 5^{x-1} = 31$$
 $36 \cdot 216^{3x+1} = 1$ $3^{x+2} - 5 \cdot 3^x = 36$

$$36 \cdot 216^{3x+1} = 1$$

$$3^{x+2} - 5 \cdot 3^x = 36$$

$$27^{1-x} = \frac{1}{81}$$

$$3^{2x+1} - 8 \cdot 3^x = 3$$

$$49^{x+1} = \left(\frac{1}{7}\right)^x$$

$$9^x - 3^{x+1} = 54$$

$$3^x - \left(\frac{1}{3}\right)^{2-x} = 4$$

$$3^{x} - \left(\frac{1}{3}\right)^{2-x} = 4 \qquad 7^{x+2} - 14 \cdot 7^{x} = 5$$

$$4^{x} - 3 \cdot 2^{x} - 4 = 0$$

$$4^{2x+2} + 4^{x+1} - 1 = 0$$

$$4^{2x+2} + 4^{x+1} - 1 = 0$$

$$9 \cdot 81^{1-2x} = 27^{2-x}$$