
Кодирование информации

Универсальность дискретного (цифрового) представления информации.

Способы представления информации: непрерывный и дискретный.

- Непрерывная (аналоговая) величина величина, принимающая
 любое значение в пределах заданного интервала.
- Дискретная величина величина, принимающая конечное число значений в пределах заданного интервала.

Пример аналоговой и дискретной величины

Радио Wi-fi Bluetooth Живой Звук Телеканалы Записанный звук по специальным кабелям Видео и звук по HDMI кабелю Сигнал по витой паре

Достоинства дискретного (цифрового) представления информации

- простота
- удобство физической реализации
- универсальность представления любого вида информации
- уменьшение избыточности сообщения
- обеспечение защиты от случайных искажений или нежелательного доступа.

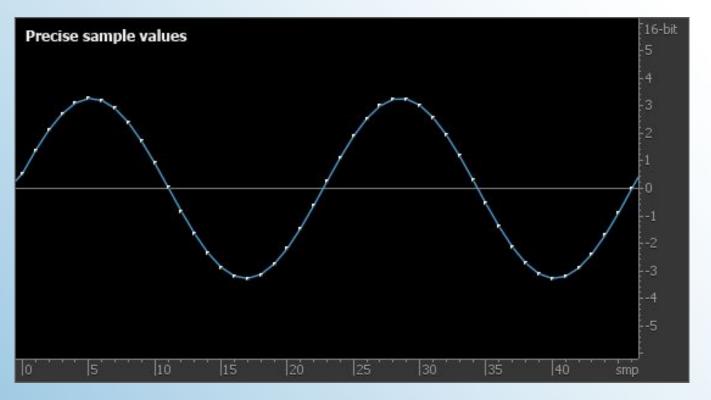
Дискретное представление информации

Вся информация, которую обрабатывает компьютер, представлена двоичным кодом с помощью двух цифр 0 и 1.

С помощью двух цифр 0 и 1 можно закодировать любое сообщение.

Кодирование – преобразование входной информации в двоичный код, в форму, воспринимаемую компьютером.

Дискретное представление информации


Декодирование – преобразование данных из двоичного кода в форму, понятную человеку.

Способы кодирования и декодирования информации в компьютере зависят от вида информации: числа, текст, графические изображения или звук.

Дискретизация – это преобразование непрерывных сигналов в набор дискретных значений в форме кодов.

Дискретное представление информации

Пример

Кодирование текстов

1 символ = 1 байт = 8 бит = 8 двоичных цифр

28= 256 символов - мощность компьютерного алфавита.

Во всем мире существует единое соглашение о распределении этих 256 комбинаций (Таблица кодировки ASCII)

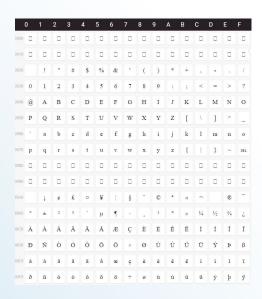
Таблица кодировки символов ASCII (American Standard Code for Information Interchange) была разработана еще 1960-х

<u>Таблица</u> <u>ASCII</u>

Кодирование текстов

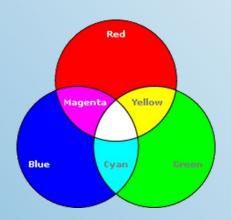
Таблица кодировки ASCII:

- Коды с 0 по 32 операции (перевод строки, ввод пробела, ...);
- Коды с 33 по 127 интернациональные символы символы латинского алфавита, цифры, знаки;
- Коды с 128 по 255 национальные символы.


Кодирование текстов

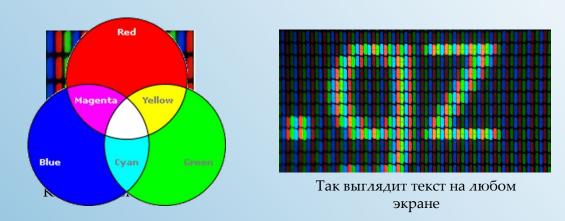
Для русских букв существует пять однобайтовых таблиц кодировок: Windows, MS-DOS, КОИ-8, Mac, ISO

Так же разработан международный стандарт Unicode (более 150 тыс. символов)

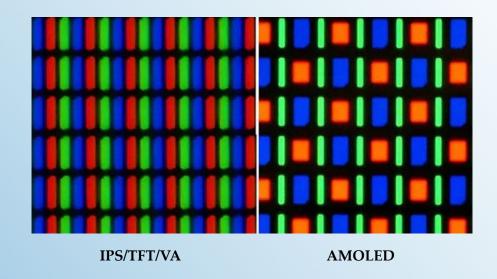

В настоящее время стандарт **Unicode** является преобладающим в Интернете и содержит в себе абсолютно все символы и знаки.

Эмодзи тоже.

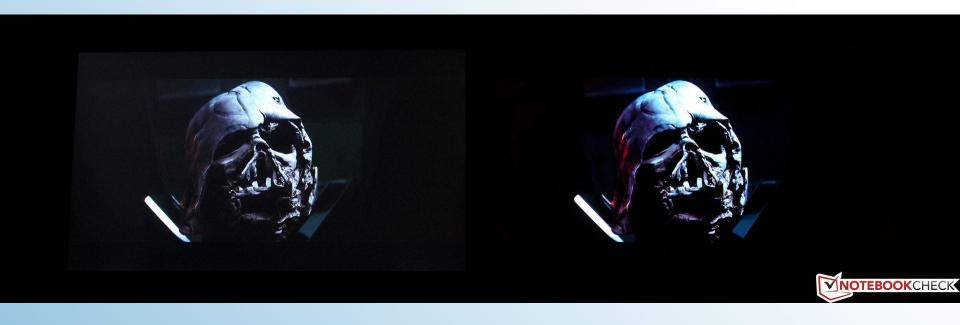
Кодирование изображений


Прежде, чем объяснять, как возникает изображение на экранах устройств, нужно сказать, что для каждого типа изображений используется свой способ кодирования.

Кодирование изображений

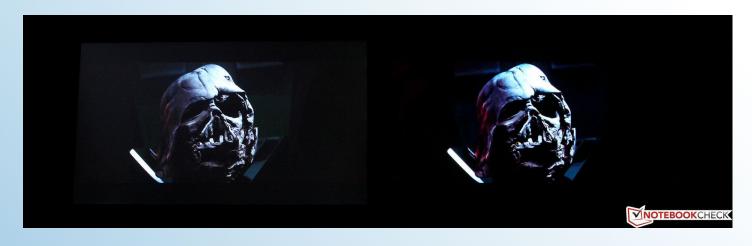

Например, растровый способ отображения информации. В этом способе изображение получается с помощью пикселей.

Каждый пиксель имеет свой цвет, который складывается путем смешивания трех основных цветов:



Кстати...

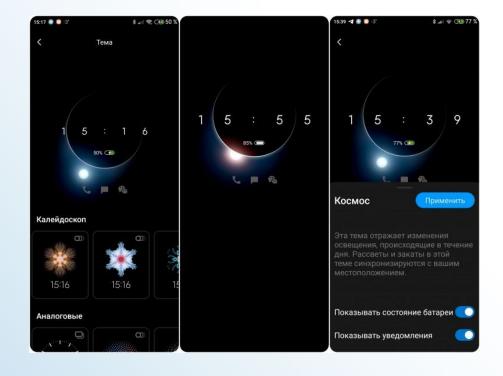
Расположение пикселей бывает разным, в зависимости от технологии изготовления матрицы.



Сравнения

Слева IPS экран, справа AMOLED экран

Сравнения



IPS экран не имеет чистого черного цвета из за подсветки за матрицей, а AMOLED экран может светить каждым пикселем по отдельности

Сравнения

Поэтому AMOLED может так:

Он может использовать виджеты при заблокированном экране

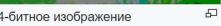
НО! Данный тип матриц дорогой, при малой трещине требует полной замены и мерцает

Глубина цвета и количество цветов

Различают 256 оттенков каждого цвета: по номерам от 0 до 255.

Всего из 256 оттенков трех основных цветов можно образовать:

256 *256 *256 ≈16,7 млн. цветов.


Количество цветов можно вычислить по формуле:

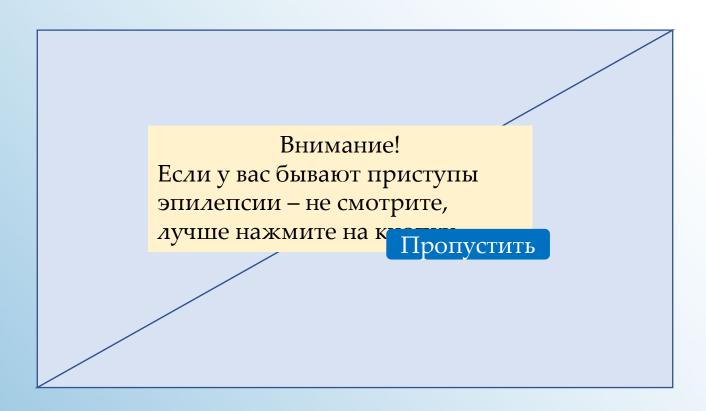
N=2^I, где I – глубина цвета.

Глубина цвета и количество цветов

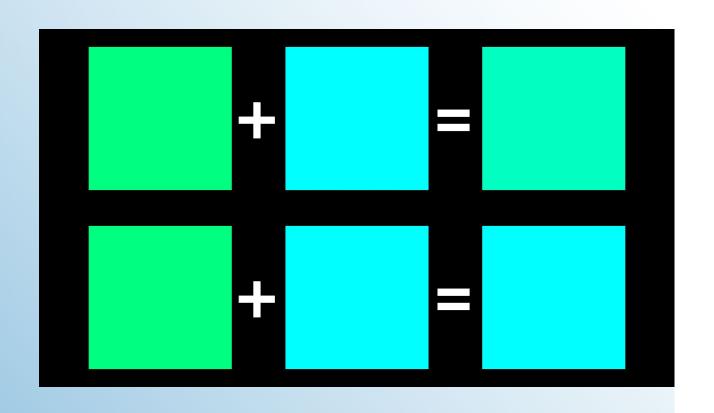
Зависимость качества изображения от глубины цвета:

8-битное изображение

24-битное изображение


Иногда...

Когда на техническом уровне пиксели не могут выдавать нужный цветовой тон (если производители хотят с экономить), прибегают к хитрости:


Пиксели начинают мигать то одним, то другим цветом, чтобы получить среднее между ним тон.

Пример на следующем слайде.

Управление частотой кадров

Управление частотой кадров

Кодирование чисел

Кодирование числовой информации в компьютере производится в **двоичной системе счисления.**

В компьютерах также используют шестнадцатеричную систему счисления.

Система счисления (СС) - способ записи чисел с помощью некоторого набора цифр.

Кодирование чисел

Основание СС - количество цифр, используемых для записи числа.

Позиционная СС – система счисления, в которой значение каждой цифры зависит от ее позиции в записи числа.

Кодирование чисел. Примеры

 1.
 Десятичная
 CC
 3.
 Шестнадцатеричная
 CC

 Набор цифр: 0,1,2, ..., 9
 Набор цифр: 0,1,2, ..., 9, A, B, C, D, E, F

 Числа: 2; 301; ...
 Числа: 37; А5; F1;...

 Основание CC = 10
 Основание CC = 16

2. Двоичная СС

Набор цифр: 0,1

Числа: 0; 1; 10; 101; ...

Основание СС = 2

Перевод чисел из одной СС в другой СС

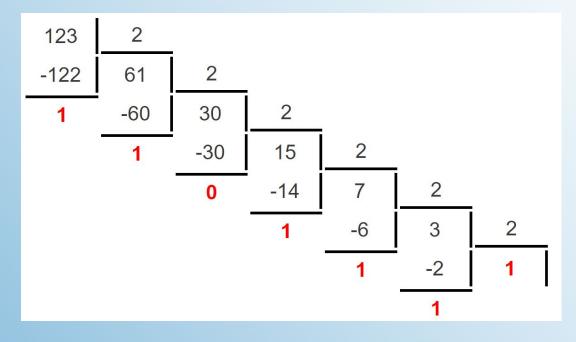
$$103_{10} \longrightarrow ?_{8}$$
 $103 \mid 8$
 $96 \mid 12 \mid 8$
 $7 \mid 8 \mid 1$

$$3_{10} \rightarrow ?_{8}$$
 $419_{10} \rightarrow ?_{16}$
 $3 \mid 8$
 $6 \mid 12 \mid 8$
 $7 \mid 8 \mid 1$
 $3 \mid 16 \mid 1$
 $3 \mid 16 \mid 1$

$$37_{10} \longrightarrow 100101_2$$

$$103_{10} \longrightarrow 147_{8}$$

$$419_{10} \longrightarrow 1A3_{16}$$


Перевод чисел из десятичной СС в двоичную

 $1) 123_{10} = N_2$

Ответ:

Перевод чисел из десятичной СС в двоичную

Перевод чисел из десятичной СС в двоичную

2) $255_{10} = N_2$

Ответ:

Перевод чисел из десятичной СС в ДВОИЧНУЮ

 N_2

 255_{10} 2) 123_{10} 1111111112 Ответ: 255 -254 127 2 -126 63 -62 2 31

2

-6

3

-2

-30

15

-14

Перевод чисел из двоичной СС в десятичную

1) $10110_2 = N_{10}$

Ответ:

Перевод чисел из двоичной СС в десятичную

1)
$$10110_{2} = N_{10}$$

Other: $10110_{2} = 1.2^{4} + 0.2^{3} + 1.2^{2} + 1.2^{1} + 0.2^{0} = 16 + 0 + 4 + 2 + 0 = 22_{10}$

Представление целого числа в памяти компьютера

Для хранения чисел в памяти отводится определенное количество разрядов – **k-разрядная сетка**:

- 1 байт для числа без знака
- 2 байта для числа со знаком

Представление целого числа в памяти компьютера

Пример: Представить число 21₁₀ в однобайтовой разрядной сетке:

- 1) 1 байт = 8 бит
- 2) 21₁₀= 10101₂

0	0	0	1	0	1	0	1
7	6	5	4	3	2	1	0

Двоичное кодирование звука

Звук – волна с непрерывно изменяющейся амплитудой и частотой.

Чем больше амплитуда, тем громче звук, чем больше частота, тем выше тон.

Каждому уровню громкости присваивается его код.

Качество двоичного кодирования звука определяется глубиной кодирования и частотой дискретизации.

Глубина кодирования звука (I) - количество бит, используемое для кодирования различных уровней сигнала.

Количество таких состояний (N) вычисляется по формуле:

Частота дискретизации – количество измерений уровня сигнала в единицу времени (Гц).

Количество уровней громкости определяет глубину кодирования.

Представление видеоинформации

Видеоинформация - это сочетание звуковой и графической информации.

Для создания на экране эффекта движения используется дискретная технология быстрой смены статических картинок.

- 1) Закодируйте с помощью таблицы ASCII слово:
 - a) Windows →
 - b) Алгоритм \rightarrow

1) Закодируйте с помощью таблицы ASCII слово:

- a) Windows \rightarrow 087 105 110 100 111 119 115
- b) Алгоритм → 128 171 163 174 224 168 226 172

3) Каков информационный объем слова ПРОГРАММИРОВАНИЕ в 16-битной кодировке?

3) Каков информационный объем слова ПРОГРАММИРОВАНИЕ в 16-битной кодировке?

B слове =
$$16*2 = 32*8 = 256$$
 бит

4) Текст занимает ¼ Кб. Какое количество символов он содержит?

4) Текст занимает ¼ Кб. Какое количество символов он содержит?

4) Текст занимает ¼ Кб. Какое количество символов он содержит?

$$\frac{1}{4}$$
 Kб = 0,25*1024*8 = 2048 бит

1 символ = 8 бит

количество символов = 2048/8 = 256 симв.

5) Какой объем видеопамяти необходим для хранения 4 страниц изображения, при условии, что разрешающая способность экрана 640*480, а используемых цветов – 32?

5) Какой объем видеопамяти необходим для хранения 4 страниц изображения, при условии, что разрешающая способность экрана 640*480, а используемых цветов – 32?

```
N=2^{I}, N – колич. цветов; I – глубина V = разрешение экрана * глубина * колич.страниц N = 32 \rightarrow I = 5 бит колич.стр. = 4; разрешение экр. = 640*480; V = 640*480*5*4 = 6144000 бит
```

6) Объем видеопамяти равен 1875 Кб и она разделена на 2 страницы. Какое максимальное количество цветов можно использовать при разрешающей способности экрана 800*600?

6) Объем видеопамяти равен 1875 Кб и она разделена на 2 страницы. Какое максимальное количество цветов можно использовать при разрешающей способности экрана 800*600?

$$V=1875 \text{ K}$$
б = $1875*1024*8 = 15360000 бит$

Колич.стр.=2; разрешение экр. = 800*600

$$\Gamma$$
лубина = $V/(800*600*2) = 16$ бит

 $N = 2^I = 2 = 65536$ цветов

7) Звук воспроизводится в течение 10 сек. При частоте дискретизации 22,05 кГц и глубине звука 8 бит. Определите его размер в байтах.

7) Звук воспроизводится в течение 10 сек. При частоте дискретизации 22,05 кГц и глубине звука 8 бит. Определите его размер в байтах.

```
V=M*I*t,
M – частота дискретизации (в <u>Гц</u>),
I – глубина в <u>битах</u>, t – время в <u>сек</u>.
M=22,05 кГц=22,05*1000=22050 Гц
I=8 бит; t=10 сек.;
V=22050*8*10=1764000 бит=220500 байт
```

8) Какой должна быть частота дискретизации и глубина кодирования для записи звуковой информации длительностью 2 минуты, если объем памяти – 5,1 Мб?

8) Какой должна быть частота дискретизации и глубина кодирования для записи звуковой информации длительностью 2 минуты, если объем памяти – 5,1 Мб?

V=M*I*t

t=2 мин.=2*60=120 сек.

V=5,1 Мб=5,1*1024*1024*8=42781901 бит

M*I=V/t=42781901/120=356516