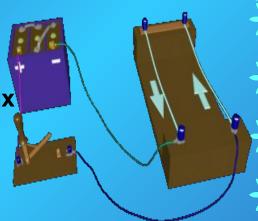

IPPSCHTALING BUITONHINA: Vyernya 11 "A" knacca

OGOTOBA AMARA. 2010-2011 yu. rog.


Андре-Мари Ампер

Токи одного направления притягиваются

Токи противоположных направлений отталкиваются.

Ганс Христиан Эрстед.

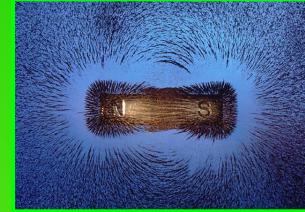
Отклонение магнитной стрелки при замыкании электрической цепи говорит о том, что Вокруг проводника с током существует магнитное поле. На него - то и реагирует магнитная стрелка. Источником магнитного поля являются движущиеся

TO KE TAKE MATHITHE DOZE

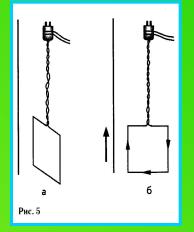
это особый вид материи, посредством которой осуществляется B3ANMOJONGTBNG MGKZJY ZBNKYLLINMNGA SIGRIPHUECKH SAPAKCHHLIMH UACTHUAMH.

CBOMCTBa MI

Магнитное поле порождается электрическим током (движущимися зарядами).

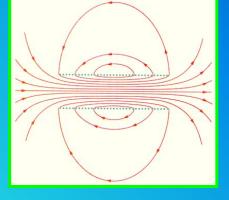

Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).

Магнитное поле существует реально независимо от нас, от наших знаний о нем.

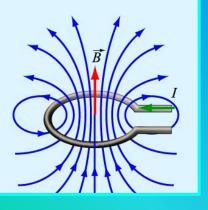

а. С помощью железных опилок.

Попадая в МП, железные опилки становятся маленькими магнитными стрелочкам. А они устанавливаются вдоль магнитных линий -МП становится видимым.

б. по действию на проводник с током.


Попадая в МП, проводник с током начинает двигаться, т.к. со стороны МП на него действует сила Ампера.

Обнаружить МП?


TO HYRKHO SHATE O MATHINTHEIX JINHIAX

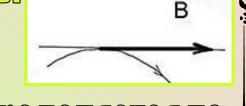
- 1. Магнитные линии замкнутые кривые, поэтому МП называют вихревым. Это означает, что в природе не существует магнитных зарядов.
- 2. Чем гуще расположены магнитные линии, тем МП сильнее.
- 3. Если магнитные линии расположены параллельно 🗯 друг другу с одинаковой густотой, то такое МП **ж** называют <u>однородным.</u>
- 4. Если магнитные линии искривлены это значит, что сила, действующая на магнитную стрелку в разных точках МП, разная. Такое МП называют неоднородным.
- 5. Направление магнитных линий связано с **Ридравлением тока в проводнике. Стоит только ж поменять направление тока в проводнике, сразу же направление магнитных линий изменяется на** противоположное!

 $\langle X \rangle$

 \bigstar

MII B AAHHOЙ CO TOUKC-Bektop Mathution NHANKUNA

За направление вектора магнитной индукции принимается направление от южного S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле. Это направление совпадает с направлением положительной нормали к замкнутому контуру с током.

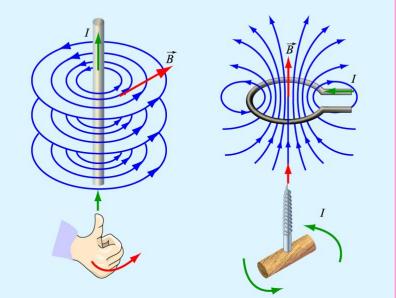

Единица измерения магнитной индукции в системе СИ:

$$[B] = \frac{\mathbf{H} \cdot \mathbf{M}}{\mathbf{A} \cdot \mathbf{M}^2} = T_{\pi}$$

JIMHUM MATHUTHON MH

STO JINHINI, KAGATGILLIG K KOTOPLIM HATPBIGHLI

TAK KR, KAK N BOKTOP B SZALHOŇ TOUKO IOJA.



Carpabrerne Julium Marthyriom Negykunn on pegeraetea no:

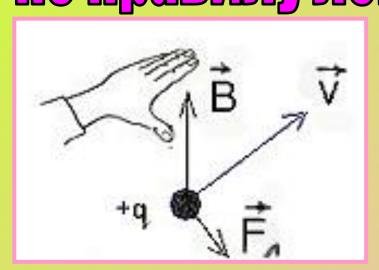
IPABNITY IPABON PYKN N IPABNITY GYPABUNKA

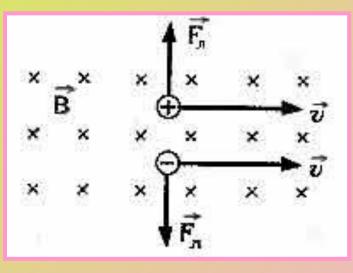
Если расположить большой палец правой руки по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции

♦≈%

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.

-это сила, с которой магнитное поле действует на проводник с током.





 сила, действующая со стороны магнитного поля на движущуюся электрически заряженную частицу.

$$F_{\pi} = |q| vB \sin \alpha$$

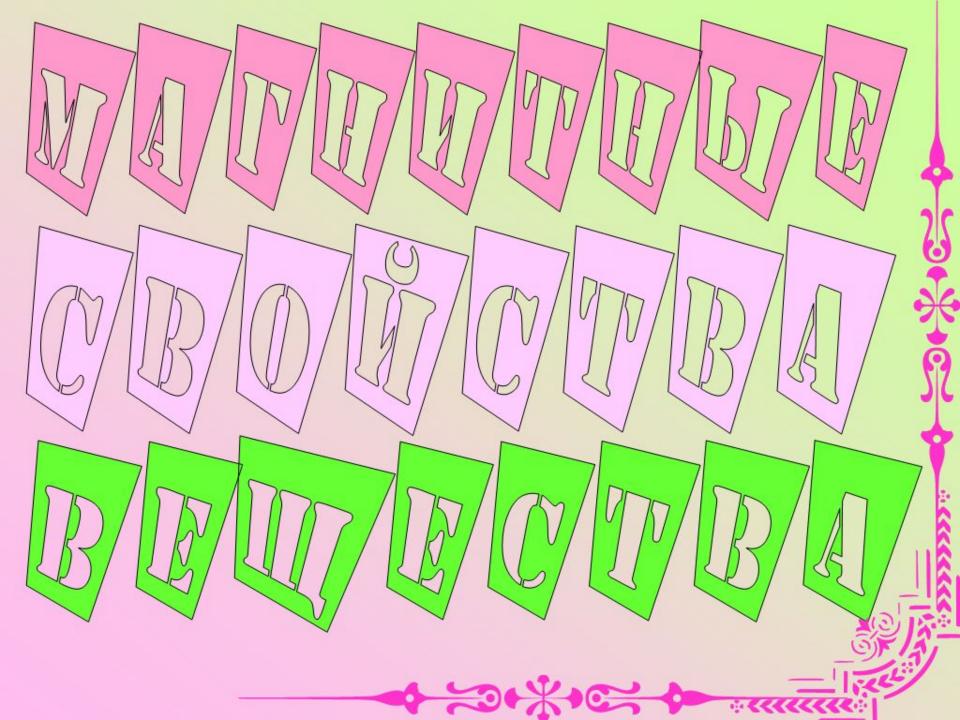
Handabaehne endel Jodehha ondehenaetea To marnin deron dwkk:

Если поставить левую руку так, чтобы перпендикулярная скорости составляющая вектора индукции входила в ладонь, а четыре пальца были бы расположены по направлению скорости движения положительного заряда (или против направления скорости отрицательного заряда), то отогнутый большой палец укажет направление силы Лоренца.

- * Так как сила Лоренца всегда перпендикулярна скорости заряда, то она не совершает работы (т.е. не изменяет величину скорости заряда и его кинетическую энергию).
- *Если заряженная частица движется параллельно силовым линиям магнитного поля, то Fл = 0, и заряд в магнитном поле движется равномерно и прямолинейно.

*Если заряженная частица движется перпендикулярно силовым линиям магнитного поля, то сила Лоренца является центростремительной:

 $F_{\scriptscriptstyle \Pi} = ma_{\scriptscriptstyle \Pi}$


В этом случае частица движется по окружности

Согласно второму закону Ньютона: сила Лоренца равна произведению массы частицы на центростремительное ускорение:

$$|q|vB = \frac{v m}{R}$$

тогда радиус окружности: $R = \frac{vm}{qB}$ $T = \frac{2\prod m}{qB} = \frac{2\Gamma}{r}$

а период обращения заряда в магнитном поле:

Магнитные свойства вещества объясняются согласно гипопезе Ампера циркулирующими внутри любого вещества замкнутыми токами: внутри атомов, вследствие движения электронов по орбитам, существуют элементарные электрические токи, которые создают элементарные магнитные поля.

Поэтому:

- 1. Если вещество не обладает магнитными свойствами элементарные магнитные поля несориентированы (из-за теплового движения);
- 2. Если вещество обладаетмагнитными свойствами элементарные магнитные поля одинаково направлены (сориентированы) и образуется собственное внутреннее магнитное поле вещества.

Вещество, создающее собственное магнитное поле, называется намагниченным. Намагниченность возникает при помещении вещества во внешнее магнитное поле.

ANAMATHETIKKI

внутреннее магнитное

поле направлено Противоположно внешнему магнитному полю, но

слабовыражено

napamarketnkn:

- внутреннее магнитное поле направлено также, как и внешнее магнитное поле, т.е. усиливает его.

OPEDDOMALHETNKN:

- внутреннее магнитное поле в 100-1000 раз больше внешнего магнитного поля

µ- Показывает во сколько раз индукциямагнитного поля в одной среде больше илименьше индукции магнитного поля в вакууме

OCHOBALIC CBONCTBA (DCP) DOMATACTAKOB:

Ферромагнетики сохраняют сильную намагниченность и после удаления внешнего магнитного поля называются постоянными магнитами.

Сильное внутреннее магнитное поле ферромагнетиков объясняется не только обращением электронов по орбитам, но, в основном, вращением их вокруг собственной оси.

Чтобы полностью размагнитить ферромагнетик, надо поместить его во внешнее магнитное поле о противоположно направленное.

Существуют ферромагнетики, не проводящие электрический ток - феррипы

Для каждого ферромагнетика существует определенная температура точка Кюри.

♦ ※ ※ ※

Если т вещества « т Кюри, то вещество обладает ферромагнитными свойствами.

Если t вещества > t Кюри, то ферромагнитные свойства (намагниченность) исчезают,

и вещество становится парамагнетиком.

Поэтому постоянные магниты при нагревании теряют свои магнитные свойства.

Применение ферромагнитов:

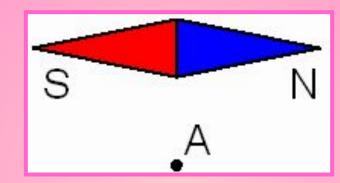
- постоянные магниты, изготовление магнитной ленты и пленки;
 - сердечники трансформаторов, генераторов, электродвигателей

1. Что является источником магнитного поля?

- А. Неподвижные электрические заряды
- Б. неподвижное электрическое поле
- В. Движущиеся электрические заряды

2. Какие силы проявляются во взаимодействии двух проводников с током?

- А. силы магнитного поля,
- Б. силы электрического поля,
- В. сила всемирного тяготения


3. Какая физическая величина имеет единицу измерения 1 Тесла?

- А. магнитная индукция.
- Б. Магнитный поток.
- В. Взаимная индукция.
- Г. ЭДС
- 4. Два параллельных проводника, по которым текут токи противоположных направлений...
- А. взаимно притягиваются,
- Б. взаимно отталкиваются,
- В. никак не взаимодействуют

- 5. Как взаимодействуют между собой параллельные сонаправленные токи?
 - А. Взаимно отталкиваются
 - Б. Взаимно притягиваются
 - В. Никак не реагируют
- 6.Для характеристики магнитного поля в некоторой его точке служит...
 - А. вектор магнитной индукции,
 - Б. поток магнитной индукции.
- 7. Какую форму стремится принять замкнутый виток по которому течет ток?
 - А. Кольца.
 - Б. Эллипса.
 - В. Прямая свитая проволока.

8. На рисунке показано расположение магнитной стрелки. Как в точке *А* направлен вектор магнитной индукции?

- А. Вверх.
- Б. Вниз.
- В. Направо.
- Г. Налево.

- 9. В чем состоит особенность линий магнитной индукции?
- А. Линии магнитной индукции начинаются на положительных зарядах, оканчиваются на отрицательных.
- Б. Линии не имеют ни начала, ни конца. Они всегда замкнуты.

10. Ферромагнетики это вещества, у которых магнитная проницаемость вещества:

$${\bf A},\ \mu \geq 1,\ {\bf B},\ \mu \leq 1,\ {\bf B},\ \mu = 1,\ {\bf \Gamma},\ \mu \geq > 1,\ {\bf Д},\ \mu \leq \leq 1.$$

11. Частица с электрическим зарядом $1,6 \times 10^{-19} K_{\pi}$ движется в однородном магнитном поле с индукцией 1 Тл со скоростью 200000 км/с, вектор скорости направлен под углом 30^{0} к вектору индукции. С какой силой магнитное поле действует на частицу?

A. $1,6 \times 10^{-19} H$ **5.** $1,6 \times 3^{-2} \times 10^{-14} H$ **B.** $6,4 \times 10^{-11} H$ **Г.** $1,6 \times 10^{-14} H$

12. Угол между проводником с током и направлением вектора магнитной индукции однородного магнитного поля увеличивается от 30 до 90 градусов. Сила Ампера при этом...

- А. ...возрастает в 2 раза
- Б. ...убывает в 2 раза
- В. ...возрастает в 0,5 раз
- Г. ... не изменяется

13. Частица с зарядом $1,6\times10^{-19}$ $K_{\it R}$ движется в однородном магнитном поле с индукцией В покруговой орбите с радиусом $R=3\times10^{-4}$ M. Величина импульса частицы равна $p=2,4\times10^{-22}$ $K_{\it C}\times_{\it M}/c$. Чему равна величина В индукции магнитного поля?

CHICOK MTEPATYPЫ:

- 1. Универсальный справочник старшеклассника/Под.ред.
- А.А. Кузнецова- Москва ОЛДА Медиа Групп, 2010.-800стр.
- 2. ЕГЭ 2010. Физика: Сдам без проблем! / В.С. Бабаев Москва Эксмо, 2009. -128 стр.
- 3. Физика: учебник для 11 кл. общеобразоват. Учреждений / Г.Я Мякишев, Б.Б Буховцев. Москва: Просвещение, 2003. -336 стр.
- 4. Справочник школьника: 5-11 класс / Сост. А. Новицкий, Москва: РИПОЛ классик, 2009. 637 стр.
- 5. Ресурсы Интернета: www.class-fizika.ru.

