
Stacks

Objectives

1. Understands the concepts of stacks
2. Representation of stacks as data structure
3. Different method for implementing stacks
4. Application of stacks
5. Use of stacks in recursion problem

What is a stack?
• It is an ordered group of homogeneous items of elements.

• Elements are added to and removed from the top of the stack
(the most recently added items are at the top of the stack).

• The last element to be added is the first to be removed
(LIFO: Last In, First Out).

Use of stack in Computer Science

Consider an example,
where we are executing function A.

main()
{ A()}

A()
{ B() }

B()
{C()}

C()
{D()}

D()
{E()}

Use of stack in Computer Science
In the course of its execution, function A calls another function B.
Function B in turn calls another function C, which calls function D.

�The system stack ensures a
proper execution order of
functions.

�Therefore, stacks are frequently
used in situations where the
order of processing is very
important, especially when the
processing needs to be postponed
until other conditions are fulfilled.

Operation on Stack

push(i) to insert the element i on the top of the stack

pop() to remove the top element of the stack and to return
the removed element as a function value.

Top() to return the top element of stack(s)

empty() to check whether the stack is empty or not. It returns
true if stack is empty and returns false otherwise

�Stacks can be implemented using either arrays or linked lists.

Works on the principle of LIFO

LIFO – Last In First Out

ARRAY REPRESENTATION OF STACKS
1. In the computer’s memory, stacks can be represented as a linear array.

2. Every stack has a variable called TOP associated with it, which is
used to store the address of the topmost element of the stack.

1. TOP is the position where the element will be added to or deleted from.

2. There is another variable called MAX, which is used to store the
maximum number of elements that the stack can hold.

3. Underflow and Overflow
if TOP = NULL,(underflow), it indicates that the stack is empty and
if TOP = MAX–1,(overflow) then the stack is full.

Algorithm for PUSH operation

Algorithm for POP operation

Algorithm for PEEK operation

PUSH operation

POP operation

PEEK operation

LINKED REPRESENTATION OF STACK
Stack may be created using an array. This technique of creating a stack is easy, but
the drawback is that the array must be declared to have some fixed size. In case
the stack is a very small one or its maximum size is known in advance, then the
array implementation of the stack gives an efficient implementation. But if the array
size cannot be determined in advance, then the other alternative, i.e., linked
representation, is used.

1. In a linked stack, every node has two parts—one that stores data and another
that stores the address of the next node. The START pointer of the linked list
is used as TOP.

2. All insertions and deletions are done at the node pointed by TOP.
If TOP = NULL, then it indicates that the stack is empty.

The storage requirement of linked representation of the stack with n elements is O(n), and
the typical time requirement for the operations is O(1).

Algorithm for PUSH operation
of Stack implemented using Linked list

Algorithm for POP operation
of Stack implemented using Linked list

Algorithm for PUSH operation

Algorithm for POP operation

APPLICATIONS OF STACKS

1. Parentheses checker
2. Conversion of an infix expression into a postfix

expression
3. Evaluation of a postfix expression
4. Conversion of an infix expression into a prefix

expression
5. Evaluation of a prefix expression
6. Recursion
7. Tower of Hanoi

Parentheses Checker

Stacks can be used to check the validity of parentheses in
any algebraic expression.

For example,
an algebraic expression is valid if for every open bracket
there is a corresponding closing bracket.

For example,
the expression (A+B} is invalid
an expression {A + (B – C)} is valid

Algorithm:
• Declare a character stack S.

• Now traverse the expression string exp.
– If the current character is a starting bracket (‘(‘ or ‘{‘ or ‘[‘)

then push it to stack.

– If the current character is a closing bracket (‘)’ or ‘}’ or ‘]’)
then pop from stack and if the popped character is the
matching starting bracket then fine else parenthesis are
not balanced.

• After complete traversal, if there is some starting
bracket left in stack then “not balanced”

 Pseudo code: Parenthesis Matching
 valid = true /* assuming that the string is valid*/
 s = empty stack;
while (not end of the string) {

 symbol = next input string;
 if (symbol = ‘(‘ || ‘[‘ || ‘{‘)
 push(symbol);

 if (symbol = ‘)‘ || ‘]‘ || ‘}‘)
 {
 if (empty (s))
 valid = false;
 else {
 i = pop();
 if (i ! =symbol)
 valid = false;
 } //end of else
 } // end of if

} //end of while
 if (valid)
 cout<< “the string is valid”;
 else
 cout<<(“ the string is invalid”;

Mathematical Notation Translation

prefix (polish)
postfix (reverse polish)

Mathematical Notation Translation

• Infix – prefix (polish)

• Infix – postfix (reverse polish)

The fundamental property of these notations is that the order in
which the operations are to perform are completely determined
by the positions of operator and operands in the expression.
There is no need to use parenthesis to define any precedence

For example, if we have an expression
A + B * C, then first B * C will be done and the result will be added to A.
(A + B) * C, will evaluate A + B first and then the result will be multiplied with C

Conversion of an Infix Expression into a Postfix Expression

An algebraic expression may contain parentheses, operands, and operators.
For simplicity of the algorithm we assume only +, –, *, /, % operators.

The precedence of these operators can be given as follows:
Higher priority *, /, % Lower priority +, –

the order of evaluation of these operators can be changed by making use of
parentheses.
For example, if we have an expression
A + B * C, then first B * C will be done and the result will be added to A.
(A + B) * C, will evaluate A + B first and then the result will be multiplied with C.

Algorithm
Infix Expression to a Postfix Expression

Example

CHAR STACK POSTFIX EXPRESSION

 (
A (A
- (- A
((- (A
B (- (A B
/ (- (/ A B
C (- (/ A B C
+ (- (+ A B C /
((- (+ (A B C /
D (- (+ (A B C / D
% (- (+ (% A B C / D
E (- (+ (% A B C / D E
* (- (+ (* A B C / D E %
F (- (+ (* A B C / D E % F
) (- (+ A B C / D E % F *
/ (- (+ / A B C / D E % F *
G (- (+ / A B C / D E % F * G
) (- A B C / D E % F * G / +
* (- * A B C / D E % F * G / +
H (- * A B C / D E % F * G / + H
) A B C / D E % F * G / + H * -

Evaluation of a Postfix Expression

Evaluation of a Postfix Expression

Example

Infix to Prefix Expression

Step 1. Push “)” onto STACK, and add “(“ to start of the A. 
 
Step 2. Scan A from right to left and repeat step 3 to 6 for each element of A until the
STACK is empty or contain only “)”
 
Step 3. If an operand is encountered add it to B
 
Step 4. If a right parenthesis is encountered push it onto STACK
 
Step 5. If an operator is encountered then:
 a. Repeatedly pop from STACK and add to B each operator (on the top of

STACK) which has higher precedence than the operator.
 b. Add operator to STACK
 
Step 6. If left parenthesis is encountered then
 a. Repeatedly pop from the STACK and add to B (each operator on top of

stack until a right parenthesis is encountered)
 b. Remove the left parenthesis
 
Step 7. Reverse B to get prefix form 

Method1- Algorithm Infix to Prefix Expression

Method2- Infix Expression to a Prefix Expression

Step 1. Push “)” onto STACK, and add “(“ to start of the A. 
 
Step 2. Scan A from right to left and repeat step 3 to 6 for each element of A
until the STACK is empty or contain only “)”
 
Step 3. If an operand is encountered add it to B
 
Step 4. If a right parenthesis is encountered push it onto STACK
 
Step 5. If an operator is encountered then:
 a. Repeatedly pop from STACK and add to B each operator (on the
top of STACK) which has higher precedence than the operator.
 b. Add operator to STACK
 
Step 6. If left parenthesis is encountered then
 a. Repeatedly pop from the STACK and add to B (each operator on top
of stack until a right parenthesis is encountered)
 b. Remove the left parenthesis
 
Step 7. Reverse B to get prefix form 

14 / 7 * 3 – 4 + 9 / 2

Char Stack Expression

14 / 7 * 3 – 4 + 9 / 2

Char Stack Expression

Evaluation of a Prefix Expression

Example - + * 2 3 / 2 4 + 4 3
Char Stack operation

3 3

4 3, 4

+ 7 4+3

4 7, 4

2 7, 4, 2

/ 7, 0 2/4

3 7, 0,3

2 7, 0,3, 2

* 7, 0, 6 2*3

+ 7, 6 6 +0

- -1 6-7

14 / 7 * 3 – 4 + 9 / 2

+ - * / 14 7 3 4 / 9 2

Char Stack Expression

