Algorithms for Sorting and
Searching

Binary search.
Selection sort.
Insertion sort.
Merge sort.
Quick sort.

A A

Binary search

If we know nothing
about the order of
the elements in the

A better worst
case running
time - O(n)

array

Using a binary
If an array is sorted search with
O(lgn) time

Binary search

What does it mean for one element to be less than another?

When the

SEIERS it’s simple
are numbers

one element is

When the less than
elements lexicographic ;Z%tlzec:;;';
. ordering before the
are Strl ngS other element

in a dictionary

Binary search

What does mean sorting?

Sorting means: to put into

. Red
some well-defined order.

Green

Blue

A.. AA
- H oy

Sorting

Binary search

Binary search requires the array being searched to be
already sorted.

\\&
—
‘“

Binary search

Binary search has the advantage that it takes only
O(lgn) time to search an n-element array.

\\&
—
ra

Binary search

The books on the bookshelf already sorted by author
name.

I'he position of the book 1s named a slot.

I'he key 1s the author name.

'F
—

,

o

Binary search

Procedure BINARY-SEARCH(A.n.x)
Inputs and Output: Same as LINEAR-SEARCH.

I. Set pto 1, and set r to n.
2. While p < r, do the following:
A.Setgto [(p+T1)/2].
B. If Alg] = x,then return ¢.
C. Otherwise (A[g] # x),if Alg] > x,thenset rtog — 1.
D. Otherwise (A[g] < x),set ptog + 1.

3. Return NOT-FOUND.

Binary search

Procedure RECURSIVE-BINARY-SEARCH (A. p.r.x)

Inputs and Output: Inputs A and x are the same as LINEAR-SEARCH,
as is the output. The inputs p and r delineate the subarray A[p .. r]
under consideration.
. If p > r,then return NOT-FOUND.
2. Otherwise (p < r), do the following:
A.Setgto |[(p+r1)/2].
B.If A[g] = x, then return q.
C. Otherwise (A[g] # x),if A[g] > x, then return
RECURSIVE-BINARY-SEARCH(A. p.qg — 1. Xx).
D. Otherwise (A[g] < x), return
RECURSIVE-BINARY-SEARCH(A.q + 1.r.Xx).

Binary search

The running time of binary search is O(lgn).

| The array is already sorted.

Selection sort

Remind: Each element is less than or equals to its
following element in the array.

Procedure SELECTION-SORT(A.n)

Inputs and Result: Same as before.

l. Fori =1ton—1:
A. Set smallest to i .
B.For j =1 + 1ton:
1. If A[j] < Alsmallest], then set smallest to j .
C.Swap A[i] with A[smallest].

Selection sort

Selection sort => on an array of six elements

Selection sort
What is the running time of SELECTION-SORT?

How many iterations the inner loop makes?
Remember: each iteration takes ©(1) time.

Procedure SELECTION-SORT (A. n)
Inputs and Result: Same as before.
1. Fori = 1ton— I:
A. Set smallest to i .
B.For j =i+ 1ton:
1. If A[j] < A[smallest], then set smallest to j .
C.Swap A[i] with A[smallest].

Selection sort

for j running
from 2 to n n-1
for j running
from 3 ton n-2

The total number of inner-loop iterations is
(n-1)+(n-2)+(n-3)+...+2+1

Selection sort

n+(n-1)+(n-2)+(n-3)+...+2+1=
=n(n+1)/2

(n-1)+(n-2)+(n-3)+...+2+1=
=n(n-1)/2=(n%-n)/2

It is sum of arithmetic series.

Therefore, the running time of
SELECTION-SORT is ©(n?).

Insertion sort

Charles Dickens

Insertion sort

Procedure INSERTION-SORT (A.n)
Inputs and Result: Same as SELECTION-SORT.

L. Bori = 2ton:
A.Set key to Ali].and set j toi — 1.
B. While j > 0and A[j] > key, do the following:
1. Set A[j + 1] to A[j].
11. Decrement j (1.e.,set j to j — 1).
C.Set A[j + 1] to key.

Insertion sort

Insertion sort => on an array of six elements

. 2. 3 & B

6

11

3

6

1 2
—)»A-3 7

14

11

L 2.8 & 3

6

—»A_? 14

11

E 2 3 & 5 O e [2 3 4

11

— [Tl

S

6

E 2 3 & D

— .+ BITIE

6

Insertion sort

What do we say about the running time of
INSERTION-SORT?

when the inner loop

makes zero iterations @ (N)

every time

when the inner loop
makes the maximum 2
possible number of @(N)

iterations every time

Merge sort

The running times of
selection sort and insertion sort are ©O(n?).

The running time of merge sort is O(nlgn).

= O(nlgn) better because Ign grows more
slowly than n.

Merge sort

Disadvantages:

1. The constant factor in the asymptotic
notation is higher than for the other two
algorithmes.

= If the array size n is not large, merge sort
isn’t used.

2. Merge sort has to make complete copies of
all input array.

= |f the computer memory is important,
merge sort isn’t used also.

Merge sort

Divide-and-conquer algorithm

Divide the problem into a number of subproblems
that are smaller instances of the same problem.
Conquer. The subproblems solve recursively. If they
are small, than the subproblems solve as base
cases.

Combine the solutions to the subproblems into the
solution for the original problem.

Merge sort
Divide-and-conquer algorithm for example with bookshelf

Divide all index (slot) of books in two part. The
center of index’s books is g equals (p + r)/2.
Conquer. We recursively sort the books in each of
the two subproblems: [p;q] and [g+1;r].

Combine by merging the sorted books.

Merge sort

Procedure MERGE-SORT (A, p.r)

Inputs:

* A: an array.

* p.r:starting and ending indices of a subarray of A.
Result: The elements of the subarray A[p .. r] are sorted into
nondecreasing order.

. If p = r, then the subarray A[p ..r]has at most one element, and
so it 1s already sorted. Just return without doing anything.

2. Otherwise, do the following:
A.Setqgto |[(p+T1)/2].
B. Recursively call MERGE-SORT(A, p,q).

C. Recursively call MERGE-SORT(A,q + 1,r).
D. Call MERGE(A, p.q.r).

Merge sort
The initial call is MERGE-SORT (A, 1, 10).

L 2: 3 & D 6 L8 9 10
1219137 |14]11| 6|2 |10 S
Step 2A computes q to be 5,

in steps 2B and 2C are MERGE-SORT (A, 1, 5)
and MERGE-SORT (A, 6, 10).

1 2 3 4 5 6 7 8 9 10
1219137 |14 11{6]12]10]5

After the two recursive calls return, these two subarrays are sorted.

L. 2.% 4.5 6 7 8 9 10
3(719(12(14 2(5]6 (1011

Merge sort

At last, the call MERGE (A, 1, 5, 10) in step 2D

1
2

3 4.5 6 7 8 9.10
50679 |10(11|12[14

W |t

The procedure MERGE is used to merge the
sorted subarrays into the single sorted subarray.

divide

divide

divide

divide

merge

merge

merge

merge

4 q r
1 3 4 5 6 7 8 9 10

|l2|9|3|7|l4|ll|6|2|10|5|

1 \14

p q r q r
1 2 3 & 5 6 8 9 10
[12]9[3]714] |11|6|2|10|5|
2/ N\ ¢ 15) \\ 22
p pa;” p q r pgq r
1 6 7 8 9 10
|12|9|3| |7|14| [11]6[2] 105 |

3 N7 10 \11 16 \20 23) \24

P4 T BT BT B PAT P BE
5 8 9 10

1 2 3 4 5
2[9] [3] [7] [4] iTs] [2] [10] [5]
4y Ns 17y \18

pr P’

2] [] i1 []
oy 1oy

p4q r p4q r

p 49 T p 4 r
¥ 2 3. 4: 5 6 7 8 9 10
[3]7]9[12]14] [2|5]6]10]11]
27 ¥
P q r

1 25 3 4 § 67 8 9 10
|2[3[5]6]7]9[10]11]12]14]

Merge sort

Let’s look at just the part of the bookshelf from slot 9 through slot 14.
We have sorted the books in slots 9-11 and that we have sorted the
books in slots 12—-14.

Gulliver’s Travels \

Jonathan Swift
Jack London

(White Fang
Sir W
Ivanhoe

Oliver Twist

Charles Dickens [N\

Merge sort

We take out the books in slots 9—11 and make a stack of them,
with the book whose author is alphabetically first on top,
and we do the same with the books in slots 12—-14.

-1 Charles Dickens
/. Oliver Twist
Jonathan Swift § PSR I
I B R A White Fang
~{ Sir Walter Scott
A\ Ivanhoe

Gustave Flaubert

I(.

Merge sort

Because the two stacks are already sorted, the book that should go
back into slot 9 must be one of the books atop its stack.

We see that the book by Dickens comes before the book by
Flaubert, and so we move it into slot 9.

y

Gustave Flaubert
Madame Bova
Jonathan Swift Jack London
Gulliver’s Travels White Fang

-1 Sir Walter Scott
7\ Ivanhoe

Charles Dickens

Oliver Twist
ll||'|'l|
'l.l.l
Wy,

10 11 12 13 14

\C‘

Merge sort

Into slot 10 must be the book still atop the first stack, by
Flaubert, or the book now atop the second stack, by Jack
London. We move the Flaubert book into slot 10.

o)
-~
o
N 3
A
e

Sy

Jack London
Gulliver’s Travels White F ang

Charles Dickens

Oliver T'wist

Gustave Flaubert

War and Peace Ivanhoe

Madame Bova
i
||'|||..
'I"l

llllh

I
|

10 ¥ SR RS GRg

Merge sort

Gulliver's Travels Vi

5
:
:

soyuva]
OIS JNJE AN TS

u.s,a.:.i..:
uopuo| youf

Lapno g awvpp py v

- N\ 12ane14 awgsns

ISIM] 4201]()
SUNPIT SIAY)

Merge sort

 S]MDA] S 42Ny |

. ,/.,. Yims ueyjeuo [

20YuDA] \

11008 a9 EA JIS |

ETNESTTT

BOpHY Y8f- §

Procedure MERGE(A, p,q,r)

Inputs:
* A: an array.
* p.q,r:indices into A. Each of the subarrays A[p..q] and
Alg + 1..r]is assumed to be already sorted.
Result: The subarray A[p ..r] contains the elements originally in
Al[p..qland A[g + 1..r], but now the entire subarray A[p..r]is

sorted.

l. Setnytog—p—+ l,andsetnytor —gq.

2. Let B[1..n, 4+ 1] and C[1..n; 4 1] be new arrays.

3. Copy A[p..q]into B[l..n,],and copy A[g + 1..r]into
Cll..n,].

4. Setboth B[n; + 1] and C[n, + 1] to oo.

5. Setbothi and j to 1.

6. Fork = ptor:

A.If B[i] < C[j], then set A[k]to B[i] and increment i.
B. Otherwise (B[i] > C[j]),set A[k]to C[j] and increment ;.

Merge sort

Let’s say that sorting a subarray of n elements takes time T(n).

The time T(n) comes from the three components of the

divide-and-conquer algorithm:

* Dividing takes constant time, because it amounts to just
computing the index q.

* Conquering consists of the two recursive calls on
subarrays, each with n/2 elements. It is time T(n/2).

 Combining the results of the two recursive calls by
merging the sorted subarrays takes ©(n) time.

T(n)=T(n/2)+T(n/2)+O(n)=2T(n/2)+O(n) => T(n)= O(nlgn)

Quick sort

Quicksort uses the divide-and-conquer paradigm

and uses recursion.

There are some differences from merge sort:

* Quicksort works in place.

* Quicksort’s worst-case running time is ©(n?)
but its average-case running time is better: ©
(nlg n).

Quicksort is often a good sorting algorithm to

use in practice.

Quick sort

1. Divide by first choosing any one book that is in slots p
through r. Call this book the pivot.

* Rebuild the books on the shelf so that all other books
with author names that come before the pivot’s author
are to the left of the pivot, and all books with author
names that come after the pivot’s author are to the right
of the pivot.

* The books to the left of the book by London are in no
particular order, and the same is true for the books to
the right.

2. Conquer by recursively sorting the books to the left of
the pivot and to the right of the pivot.
3. Combine — by doing nothing!

Quick sort

|

- U AN £ L

Spaand J 5, 40agm0) |
YiMs ueeuof |

uopuo| xu.._.

SUDNPI SAIBY)

Lavaog auvpopy

1SIM] 4243)() M |

0

|

x HIqNEL] 48D ¢ |

|

auv gy |\

uopuory youf |

. ¥ 1
y ’

—a D LI A o

S L 494110 |
SuMII(SAIEYD) |

§]12AD4 | S 4247N5)

JimS ueyjeuof

100G 1A JIS |

o
"

"

13 14 15

14

11

10

15

13

11

10

Quick sort

Procedure QUICKSORT(A. p.r)
Inputs and Result: Same as MERGE-SORT.

. If p = r,then just return without doing anything.
2. Otherwise, do the following:

A. Call PARTITION(A. p.r),and set g to its result.
B. Recursively call QUICKSORT(A. p.g — 1).
C. Recursively call QUICKSORT(A.q + 1.r).

The procedure PARTITION (A, p, r) that partitions the
subarray A[p; r], returning the index g where it has
placed the pivot.

| 2 3 4.5 .67 8 9 10
97115 11122 [1a]3 [10] 6
p q r
1 2. .oy .S 608 9 10
512 3'3127149 10]11
i p q r
1 7 IR 5 6. 5 & 9 10
25 719 [1ohi a2
[).r [) J [) q g [),q r
1 3 S 6 7 9 10
2] [5 7 9|10 12'14
p qr pr

) 10

14

5.6
7'9
Y

p.r

d

7

Quick sort

Procedure PARTITION (A, p.r)
Inputs: Same as MERGE-SORT.

Result: Rearranges the elements of A[p .. r] so that every element in
Al[p..q — 1] is less than or equal to A[¢g] and every element in
Alg + 1..r] is greater than ¢. Returns the index ¢ to the caller.

I. Setgqto p.
2. Foru= ptor — 1 do:

A.If Alu] < Alr], then swap A[g] with A[u] and then
increment ¢ .

3. Swap Alg] with A[r] and then return ¢.

Quick sort

return 8

Quick sort

In better case quicksort has the running time

O(nlgn).

In the worst case quicksort has the running
time O(n?).

Recap

Searching algorithms

Worst-case Best-case Requires
Algorithm running time running time sorted array?
Linear search O(n) G(1) no
Binary search ®(lgn) G(1) yes

Sorting algorithms

Recap

Worst-case Best-case Worst-case
Algorithm running time running time swaps In-place?
Selection sort ®(n?) (-‘)()12)
Insertion sort ®(n?) O(n) O(n?)
Merge sort @(nlgn) ®(nlgn) G(nlgn)
Quicksort O(n?) O(nlgn) O(n?%)

