ГОАПОУ «Липецкий металлургический колледж»

Лекция. Различные подходы к измерению количества информации.

Преподаватель математики и информатики Подосинникова Е.А.

Восприятие информации

Человек воспринимает информацию из

внешнего мира с помощью всех своих органов чувств, которые являются информационными каналами, связывающими человека с внешним миром.

ЗРЕНИЕ

зрительные образы

СЛУХ

звуковые образы

ОБОНЯНИЕ

запахи

ВКУС

вкусовые ощущения

ОСЯЗАНИЕ

тактильные ощущения

Виды информации

<u>По способу восприятия:</u>

- Визуальная
- Аудиальная
- Тактильная
- Вкусовая
- обонятельная

Виды информации

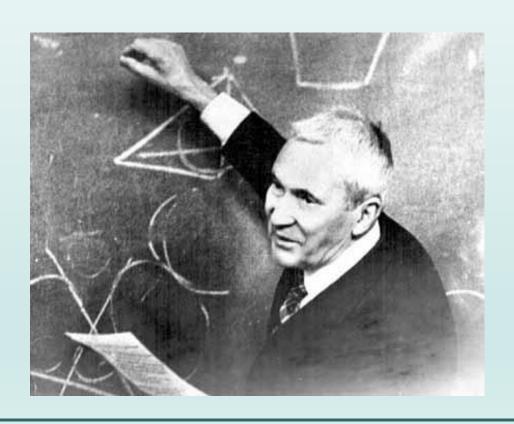
По форме представления:

- Графическая
- Числовая
- Текстовая
- Звуковая
- Табличная

Количество информации – это числовая характеристика информации, отражающая ту степень неопределенности, которая исчезает после получения информации.

Существуют различные подходы к измерению количества информации:

- 1) Алфавитный
- 2) Содержательный
- 3) Вероятностный


1. АЛФАВИТНЫЙ ПОДХОД

Алфавитный подход основан на подсчете числа символов в сообщении и позволяет определить количество информации, заключенной в тексте. При алфавитном подходе, определяется количество информации без учета содержания и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.

Алфавитный подход является объективным, т.е. он не зависит от субъекта (человека), воспринимающего текст.

Данный подход удобен при использовании технических средств работы с информацией, т.к. не учитывается содержание сообщения.

Основоположником алфавитного подхода измерения информации является великий российский ученый-математик *Андрей Николаевич Колмогоров* (1903-1987).

Алфавитный подход – как способ измерения информации.

АЛФАВИТ – это вся совокупность символов, используемых в некотором языке для представления информации.

Обычно под алфавитом понимают только буквы, но поскольку в тексте могут встречаться знаки препинания, цифры, скобки, пробел, то они могут включатся в алфавит, если это оговорено в условии задачи.

Ограничений на максимальную (max) мощность алфавита нет, но есть достаточный алфавит мощностью 256 символов. Этот алфавит используется для представления текстов в компьютере.

Поскольку 256=2⁸, то **1символ несет в тексте 8 бит информации**.

При алфавитном подходе считается, что каждый символ текста имеет определенный «информационный вес». Информационный вес символа зависит от мощности алфавита и обозначается *i*.

Алфавит, который содержит наименьшее число символов, используется в компьютере. Он содержит всего два символа 0 и 1 и называется <u>двоичным алфавитом</u>.

Информационный вес символа двоичного алфавита принят за единицу информации и называется **1** бит.

Например, чтобы посчитать количество информации в следующем двоичном тексте 110011111100101000101011, нужно пересчитать все 0 и 1.

В тексте содержится 24 бита информации.

При алфавитном подходе к измерению информации количество информации зависит не от содержания, а от размера текста и мощности алфавита.

МОЩНОСТЬ АЛФАВИТА (N) — это полное число символов в алфавите.

Например,

- 1) мощность русского алфавита составляет N=33;
- 2) мощность английского алфавита N=?

- 3) алфавит десятичной системы счисления это множество цифр- 0,1,2,3,4,5,6,7,8,9. Мощность такого алфавита N=10.
- 4) Компьютерный алфавит, используемый для представления текстов в компьютере, использует 256 символов, т. е. N=256
- 5) <u>Алфавит двоичной системы</u> кодирования информации имеет всего два символа-0 и 1, поэтому N=2.
- <u>Замечание</u>. С увеличением мощности алфавита увеличивается информационный вес символов этого алфавита.

Информационный вес каждого символа (i) и мощность алфавита (N) связаны формулой:

$$2^{i} = N$$

N

МОЩНОСТЬ АЛФАВИТА число символов в алфавите (его размер)

i

ИНФОРМАЦИОННЫЙ ВЕС СИМВОЛА количество информации в одном символе

Количество (объем) информации в сообщении (I) можно посчитать по формуле:

$$I = K \cdot i$$

ЧИСЛО СИМВОЛОВ В СООБЩЕНИИ

КОЛИЧЕСТВО ИНФОРМАЦИИ В СООБЩЕНИИ (ИЛИ ИНФОРМАЦИОННЫЙ ОБЪЕМ ТЕКСТА)

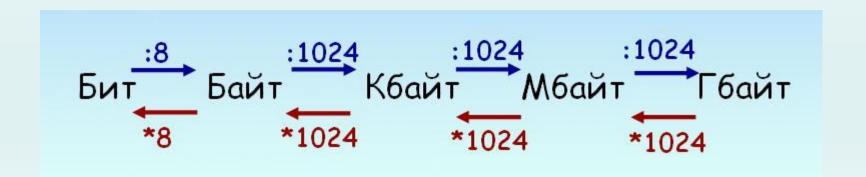
Количество информации в сообщении или информационный объём текста (I), равен количеству информации, которое несет один символ (i), умноженное на количество символов **K** в сообщении, т.е. $I = K \cdot i$

Измерение информации

Вся информация, обрабатываемая компьютером, представлена двоичным кодом с помощью двух цифр – 0 и 1.

Эти два символа 0 и 1 принято называть битами

Бит – наименьшая единица измерения объема информации.


Единицы измерения

Название	Усл. обозн.	Соотношение
Байт	Байт	1 байт = 8 бит
Килобайт	Кб	1 Кб = 1024 байт
Мегабайт	Мб	1 Мб = 1024 Кб
Гигабайт	Гб	1 Гб = 1024 Мб
Терабайт	Тб	1 Тб = 1024 Гб

Единицы измерения

Переведите

- •3,2 Гигабайт в Мегабайты
- •2078 байт в Килобайты
- •16 бит в байты

ЕДИНИЦЫ ИЗМЕРЕНИЯ ИНФОРМАЦИИ

СИМВОЛЬНЫЙ АЛФАВИТ КОМПЬЮТЕРА

- русские (РУССКИЕ) буквы
- латинские (LAT) буквы
- цифры (1, 2, 3, 4, 5, 6, 7, 8, 9, 0)
- математические знаки (+, -, *, /, ^, =)
- прочие символы («», №, %, <, >, :, ;, #, &)

$$N = 2^i$$
 \rightarrow $N = 256 = 2^8$ \rightarrow $i = 8$ бит = 1 байт

1 байт - это информационный вес одного символа компьютерного алфавита.

Скорость передачи информации

Прием-передача информации могут происходить с разной скоростью.

Количество информации, передаваемое за единицу времени, есть скорость передачи информации или скорость информационного потока.

Единицы измерения скорости передачи информации: бит в секунду (бит/с), байт в секунду (байт/с), килобайт в секунду (Кбайт/с) и т.д.

Пример 1. Подсчитайте объем информации, содержащейся в романе А. Дюма "Три мушкетера", и определите, сколько близких по объему книг можно разместить на одном лазерном диске емкостью 600 Мбайт? (в книге 590 стр., 48 строк на одной странице, 53 символа в строке).

Решение.

- 1) 590*48*53=1500960(символов).
- 2) Информационный вес одного символа, по определению, составляет 1 байт, тогда: 1500960байт=1466Кбайт= 1,4Мбайт.
 - 3) На одном лазерном диске емкостью 600 Мбайт можно разместить 600 : 1,4 = 428, 57, т.е около 428 произведений, близких по объему к роману А. Дюма "Три мушкетера".

Ответ: I = 1,4 Мб; 428 книг.

Пример 2. На диске объемом 100 Мбайт подготовлена к выдаче на экран дисплея информация: 24 строчки по 80 символов, эта информация заполняет экран целиком. Какую часть диска она занимает?

<u>Решение.</u>

- 1) K = 24*80=1920 (символов)
- 2) Т.к. информационный вес одного символа компьютерного алфавита составляет 1 байт, то I = 1920 байт.
- 3) Объем диска 100*1024*1024 байт = 104857600 байт
- 4) 1920/104857600=0,000018 (часть диска). Ответ: 0,000018 часть диска.

Домашнее задание.

ЗАДАЧА 1

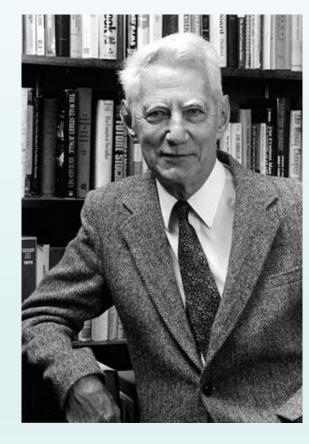
Книга, подготовленная с помощью компьютера, содержит 150 страниц. На каждой странице — 40 строк, в каждой строке — 60 символов (включая пробелы между словами). Каков объем информации в книге?

ЗАДАЧА 2

Текст составлен с помощью алфавита мощностью в 64 символа и содержит 100 символов. Каков информационный объем текста.

ЗАДАЧА 3

Сообщение записано буквами из 16 символьного алфавита, содержит 50 символов. Какой объем информации оно несет.


ЗАДАЧА 4

Два текста содержат одинаковое количество символов. Первый текст составлен в алфавите мощностью 32 символа, второй — мощностью 64 символа. Во сколько раз отличатся количество информации в этих текстах.

2. СОДЕРЖАТЕЛЬНЫЙ ПОДХОД

(количество информации зависит от ее содержания)

Основоположником этого подхода является американский учёный Клод Элвуд Шеннон(1916 — 2001). По Шеннону, информация — это мера уменьшения неопределенности наших знаний. Неопределенность некоторого события — это количество возможных исходов данного события.

- Информация это знания людей, получаемые ими из различных сообщений.
- Сообщение это информационный поток (поток данных), который в процессе передачи информации поступает к принимающему его субъекту.

 Сообщение

 Сообщение

Информативное, если оно пополняет знания человека, т.е. несет для него информацию. Количество информации в информативном сообщении больше нуля.

Неинформативное, если это:

)«старые» сведения, т.е. человек это уже знает;

содержание сообщения непонятно человеку.

Количество информации в неинформативном сообщении равно нулю.

ОПРЕДЕЛЕНИЯ

Вероятность некоторого события— это величина, которая может принимать значения от нуля до единицы.

Вероятность некоторого события определяется путем многократных наблюдений (измерений, испытаний). Такие измерения называют статистическими. И чем большее количество измерений выполнено, тем точнее определяется вероятность события.

Формула, используемая для вычисления количества информации, зависит от ситуаций, которых может быть две:

1. Все возможные варианты события равновероятны. Их число равно *N*.

2. Вероятности (*p*) возможных вариантов события разные и они заранее известны:

$$\{p_i\}, i = 1..N.$$

Здесь по-прежнему *N*-число возможных вариантов события.

Равновероятные события.

События равновероятны, если ни одно из них не имеет преимущества перед другими.

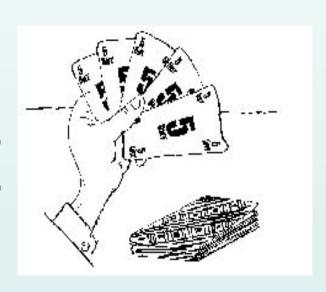
Если обозначить буквой i количество информации в сообщении о том, что произошло одно из N равновероятных событий, то величины i и N связаны между собой формулой Xapmnu: $2^i = N$

1 бит — это количество информации в сообщении об одном из двух равновероятных событий.

Формула Хартли — это показательное уравнение. Если і неизвестная величина, то решением данного уравнения будет:

 $i = \log_2 N$

Данные формулы тождественны друг другу.


Примеры.

Пример 1. Сколько информации содержит сообщение о том, что из колоды карт достали даму пик?

Решение: В колоде 32 карты. В перемешанной колоде выпадение любой карты — равновероятные события. Если *i* — количество информации в сообщении о том, что выпала конкретная карта (например, дама пик), то из уравнения Хартли:

Ответ: *i* = 5 бит.

Пример 2. Сколько информации содержит сообщение о выпадении грани с числом 3 на шестигранном игральном кубике?

Решение. Считая выпадение любой грани событием равновероятным, запишем формулу Хартли:

$$2^i = 6$$
.

Ответ: $i = \log_2 6 = 2,58496$ бит.

Данную задачу можно решить иначе:

Из уравнения Хартли имеем: $2^{i} = 6$. Так как $2^{2} < 6 < 2^{3}$, следовательно, 2 < i < 3.

Затем определяем более точное значение (с точностью до пяти знаков после запятой), что i = 2,58496 бит.

Замечание. При данном подходе к вычислению количества информации ответ будет выражен дробной величиной.

3. Вероятностный подход

Осуществим при неравновероятных событиях.

Неравновероятные события — это события, имеющие разную вероятность реализации.

Если вероятность некоторого события равна *p*, а *i* (бит) — это количество информации в сообщении о том, что произошло это событие, то данные величины связаны между собой формулой:

$$2^{i} = 1/p$$

Решая данное показательное уравнение относительно *i*, получаем:

$$i = \log_2(1/p)$$
 формула Шеннона

Пример 3. На автобусной остановке останавливаются два маршрута автобусов: № 5 и № 7. Студенту дано задание: определить, сколько информации содержит сообщение о том, что к остановке подошел автобус № 5, и сколько информации в сообщении о том, что подошел автобус № 7.

Решение. Студент провел исследование. В течение всего рабочего дня он подсчитал, что к остановке автобусы подходили 100 раз. Из них — 25 раз подходил автобус № 5 и 75 раз подходил автобус № 7. Сделав предположение, что с такой же частотой автобусы ходят и в другие дни, ученик вычислил вероятность появления на остановке автобуса № 5: $p_5 = 25/100 = 1/4$, и вероятность появления автобуса № 7: $p_7 = 75/100 = 3/4$.

Отсюда, количество информации в сообщении об автобусе № 5 равно: $i_5 = \log_2 4 = 2$ бита. Количество информации в сообщении об автобусе № 7 равно: $i_7 = \log_2 (4/3) = \log_2 4 - \log_2 3 = 2 - 1,58496 = 0,41504$ бита.

Ответ: $i_5 = 2$ бита; $i_7 = 0,41504$ бита.

Пример 4. Рассмотрим другой вариант задачи об автобусах. На остановке останавливаются автобусы № 5 и № 7. Сообщение о том, что к остановке подошел автобус № 5, несет 4 бита информации. Вероятность появления на остановке автобуса с № 7 в два раза меньше, чем вероятность появления автобуса № 5. Сколько бит информации несет сообщение о появлении на остановке автобуса № 7?

Решение. $i_5 = 4$ бита, $p_5 = 2 \cdot p_7$

Вспомним связь между вероятностью и количеством

информации: $2^{i} = 1/p$

Отсюда: $p = 2^{-i}$

Подставляя в равенство из условия задачи, получим:

$$2^{-i_5} = 2 \times 2^{-i_7}; \qquad \qquad 2^{-4} = 2 \times 2^{-i_7} = 2^{1-i_7};$$

Отсюда:
$$i_7 - 1 = 4$$
: $i_7 = 5$ вим

Вывод: уменьшение вероятности события в 2 раза увеличивает информативность сообщения о нем на 1 бит.

Очевидно и обратное правило: увеличение вероятности события в 2 раза уменьшает информативность сообщения о нем на 1 бит. Зная эти правила, предыдущую задачу можно было решить «в уме».

Решение задач