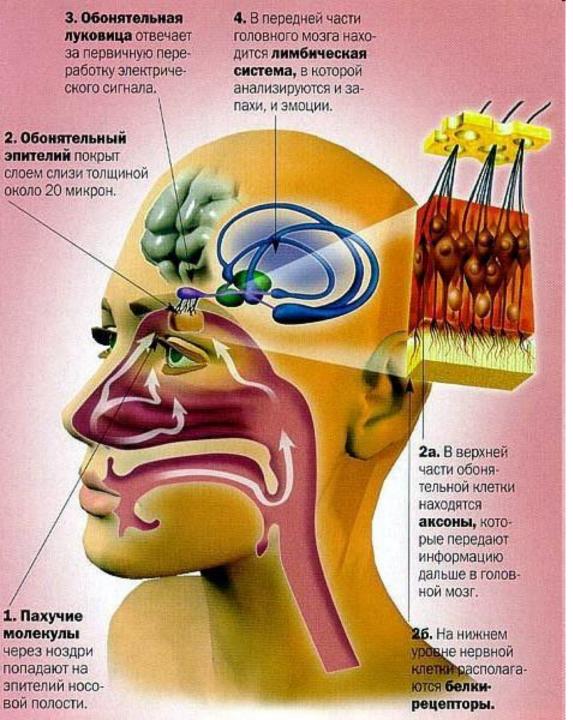
## Научно-образовательный Центр «Зондовая микроскопия и нанотехнологии»

Национальный исследовательский университет «МИЭТ»

# «Электронный нос или что может заменить нос собаки»



#### Механизм обоняния


# **человека** Обнаружение запаха Распознавание запаха





ЗАПАХ -- ощущение, обусловленное воздействием пахучих веществ на рецепторым слизистой оболочки носовой полости.

оболочки

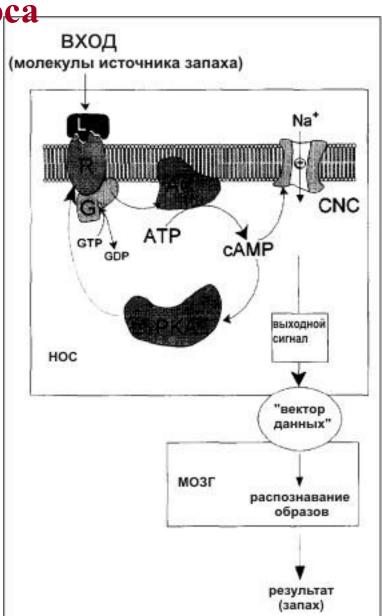


Общая поверхность, занимаемая эпителием в обеих половинках носа - 2 - 4 см² (у собак - 27 - 200 см²). Эпителий покрыт слоем обонятельной слизи толщиной 150-300 мкм.

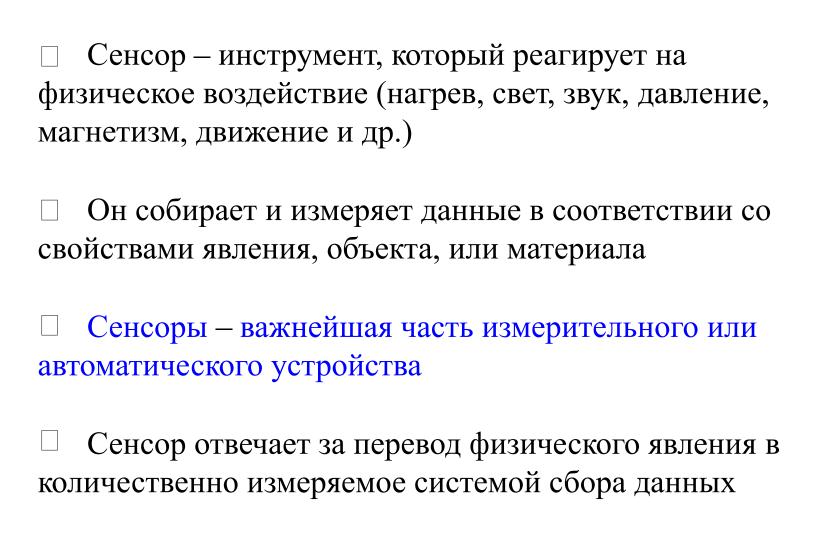
Молекула одоранта связывается с рецепторным белком в нейрональной клеточной мембране.

Обонятельные нейроны у человека содержат около 350 различных видов рецепторных белков (2004 год - Нобелевская премия).

На одном нейроне присутствует только обонятельный рецепторный белок одного вида.


Число обонятельных **нейронов** у человека -

# Функциональные общности и технические различия естественного и искусственного (сделанного человеком) носа


# Анализ запаха компонентами человеческого носа

- □ Молекулы источника запаха
   (одоранта) инициируют
   электронный или ионный
   посредством акиинации рецепторов
   мембраны (или
   сенсорного/транспортного блоков)
- компоненты «вектора данных» и в дальнейшем обрабатывается в мозгу методом распознавания образов

Сигнал определяет



#### Сенсор



#### Рынок «электронных носов»

Cyranose 320

Система обнаружения и мониторинга биологических отравляющих веществ и токсичных отходов промышленности "Centurion II"

Портативный идентификатор химических веществ "HazMatID 360"





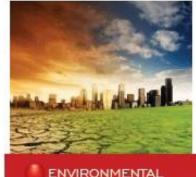


Принцип действия

32 химических датчика

Спектрометрия Ионной Подвижности

Инфракрасная спектроскопия с преобразованием Фурье
















HOM



DIAGNOSTICS

E-Noses reduce risk and complaints from environmental pollution.

They provide objective measurement and cost savings from odour management.

more...

E-Noses monitor important spaces to protect your infrastructure and assets.

They offer a new solution to problems such as graffiti vandalism.

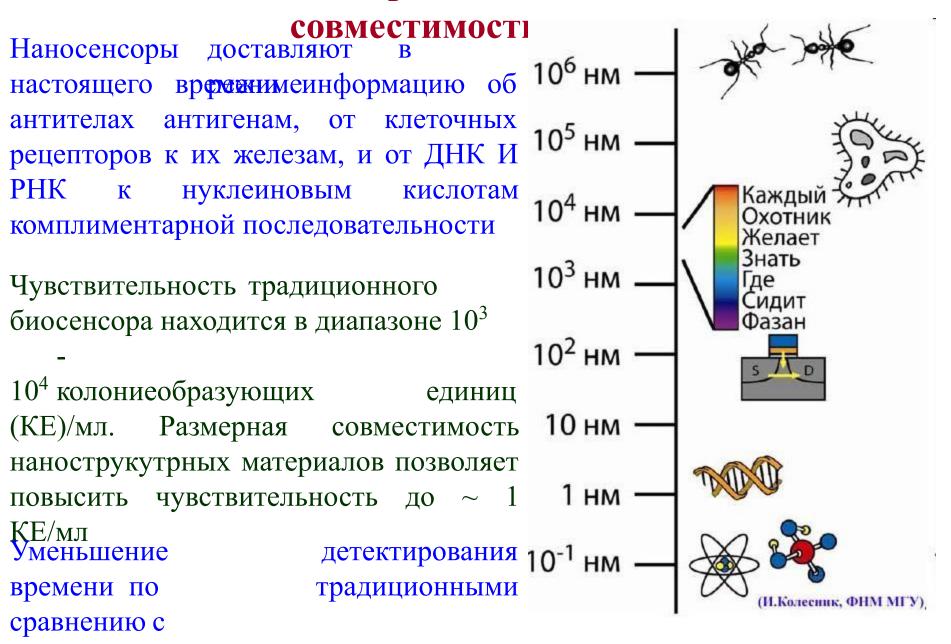
E-Noses offer new, non-invasive and rapid diagnostics for human and animal health

They will revolutionise diagnosis of diseases in humans and provide major improvement in flock and herd management.

more...

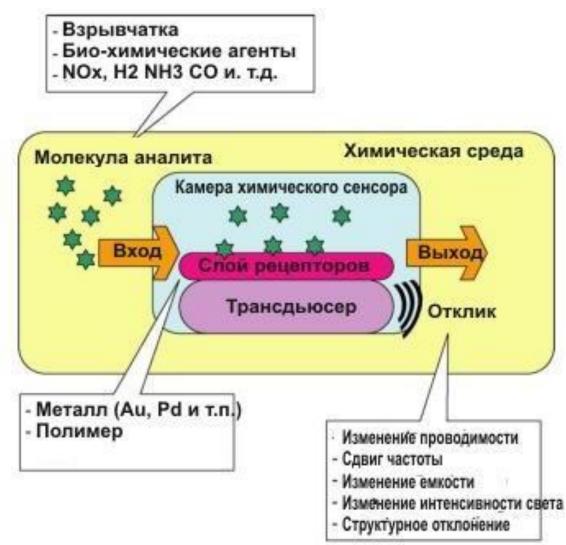
more...

Copyright 2008 e-nose.info


Suite 145, Australian Technology Park, National Innovation Centre, 4 Cornwallis Street, Eveleigh NSW 2015

#### Почему нано-сенсоры?!

| □ Частицы,<br>свя <b>винноя</b> циес опреде                                                                                           | размеры<br>лённым явле       |                         |              |              | длиі   | на, |  |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|--------------|--------------|--------|-----|--|
| фимические <b>в</b> войства, размера.                                                                                                 | • •                          | одят к                  | новым        | завися       | щим    | OT  |  |
| <ul><li>□ Когда размер струг<br/>увеличивается соответс<br/>над физическими и хим</li></ul>                                           | твенно, и пове               | рхностны                | е явления на | -            |        | •   |  |
| □ Уменьшение размера чувствительного элемента и/или трансдьюсера сенсора<br>определяет возможность миниатюризации устройства.         |                              |                         |              |              |        |     |  |
| <ul> <li>□ Наука наноматериалов работает с новыми явлениями и новый сенсор должен использовать преимущества данных явлений</li> </ul> |                              |                         |              |              |        |     |  |
| □ Чувствительность м пределы обнаружения очень малых концентр распознавание без испо                                                  | молекул могу<br>аций веществ | т быть по<br>за, станов | онижены, во  | эзможно обна | ружені | ие  |  |


#### Размер и

методами



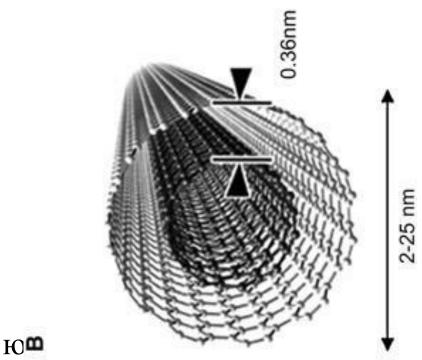
#### Электронный нос

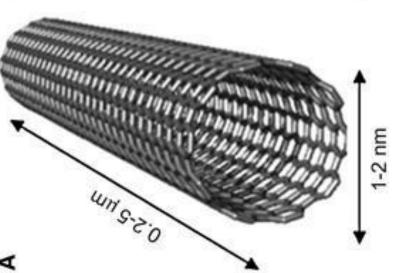
#### Общая структура химического сенсора



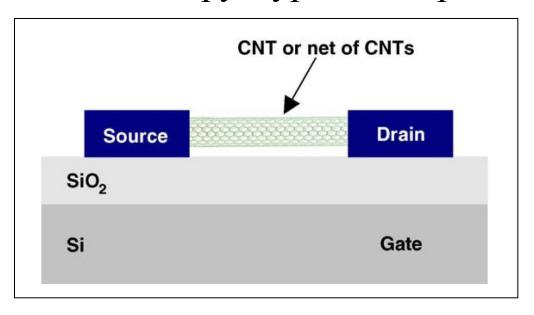
Основные особенности технологии распознавания газов:

- Обратимость
- Чувствительность
- Селективность


# **Исключительные свойства углеродных** нанотрубок


□ УНТ имеют высокий коэффициент отношения длина/радиус

Они проявляют как металлические, так и полупроводниковые и диэлектрические свойства


Они имеют высокую механическу прочность

Их свойства могут быть изменень инкапсулируя внутри них металлы создании электрических и магнитных нанокабелей





#### Схематическая структура УНТ транзистора



- □ Электрические свойства УНТ чувствительны к явлениям переноса заряда и химическому легированию различными молекулами
- □ Электронная изучаемых молекул вблизи полупроводниковых нанотрубокраприводит к проводимости углеродных нанотрубок, иотификнымием быть измерена
- □ Наносенсоры, основанные на изменении электрической проводимости являются высоко чувствительными, но они ограничены такими факторами как: невозможностью обнаружить аналиты с низкими энергиями адсорбции, слабой диффузией и переносом заряда

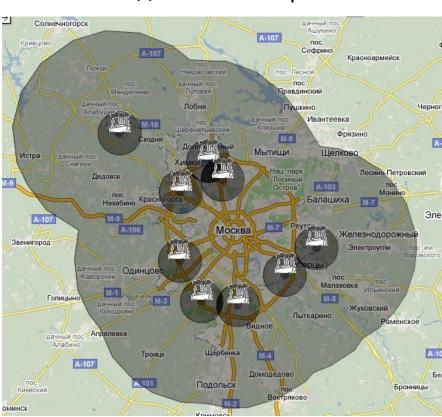
#### Схематическая структура УНТ транзистора

Адсорбция одной молекулы може значительно т проводимость изменить нанотрубки.



#### Актуальность

Задержка с переходом на топливо стандарта Евро-3 (высокооктанового) в


Загрязняющие вещества (мг/м<sup>3</sup> в 2007 г. на различных территориях Москвы



| Газ             | Вблизи<br>автотрасс | Центр<br>города | ПДК  |
|-----------------|---------------------|-----------------|------|
| СО              | 1                   | 0,8             | 3    |
| NO <sub>2</sub> | 0,051               | 0,044           | 0,04 |
| NO              | 0,057               | 0,054           | 0,06 |
| SO <sub>2</sub> | 0,007               | 0,006           | 0,05 |

http://www.mosecom.ru

Строительство мусоросжигательных заводов в жилых районах



www.greenpeace.org

#### Прямые конкуренты

#### NOKIA







сенсорный модуль, Переносимый способен отслеживать котажновыгий зировать **В**ОКРУГ себя атмосферу, состояние показателей здоровья человека и погодные локальной области условия В его Сенсорный нахождения. може **бветмена**тдет на запястье или Близкопольные средства передежени информации будут использованы ДЛЯ передачи данных от сенсора на мобильный телефон или другое принимающее устройство.



Многофункциональная сенсорная платформа радиочастотной на работающей **одеово**фикации (RFID), безарей, которая открывает возможенратьюго производства целого ряда беспроводных сенсоров для применения в сфере здравоохранения, систем безопасности, а также для использования в целях предотвращения загрязнения Каждый окружающей среды. сенсор способен с высокой точностью реагировать на множественные химические вещества в различных условиях и при этом не требует электропитания.

#### Рынок химических сенсоров

**917** крупных компаний, работает в области производства сенсорных приложений. Рынок только химических сенсоров в США превысит **5 миллиардов** долларов к 2012 году . При этом наибольшим, продолжит оставаться рынок сенсоров

для медицинских приложений и средств мониторинга состояния окружающей среды.

#### Конкуренты

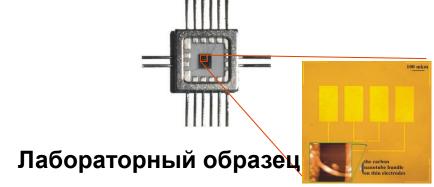


Датчик Аммиака Figaro TGS 826 (США)

Диапазон чувствительности:

30 - 300 ppm

Выходной сигнал: ~ 500 нА/ррт


Нагреватель: есть

Потребляемая мощность: 15 мВт

Вес: 32 г

Размер: 20x20x30 мм

Цена - 2800 руб



Диапазон чувствительности по аммиаку: 25 – 300 ppm Выходной сигнал: ~ 15 нА/ppm

Время отклика при комнатной

температуре -150 сек.

Нагреватель: нет

Потребляемая мощность: 3

мВт Вес: 5 г

Размер: 6х6х2 мм

«Сенсорная структура на

основе

квазиодномерных проводников». Решение о выдаче патента РФ по заявке № 2008141658 от 23.10.2008

#### Научно-техническая база создания сенсоров

Сканирующие зондовые микроскопы (ЗАО NT-MDT)



Нанотехнологический комплекс НТК - 5 Нанофаб -100 (ЗАО NT- MDT)



Установка роста углеродных нанотрубок CVDomna (МИЭТ)





Измеритель параметров сенсоров ИПС-16 (ЗАО Практик-НЦ)

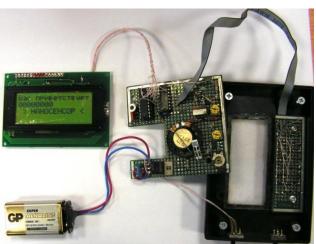



Установка для проведения электрофореза на основе ИППП 1/5

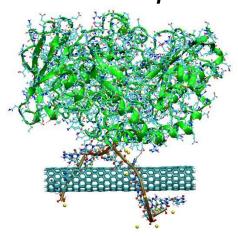


#### Применение электронного носа на нанотрубках

#### Интегральные химические сенсоры для космической промышленности




В РКТ широко применяются полимерные материалы, которые могут самопроизвольно выделять

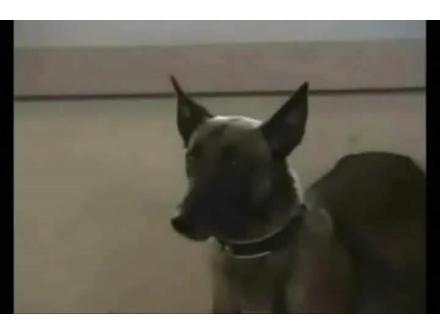

перечисленные альдегиды, спирты кетоны. Компактные химические сенсоры решают проблему мониторинга атмосферы в жилых помещениях КЛА

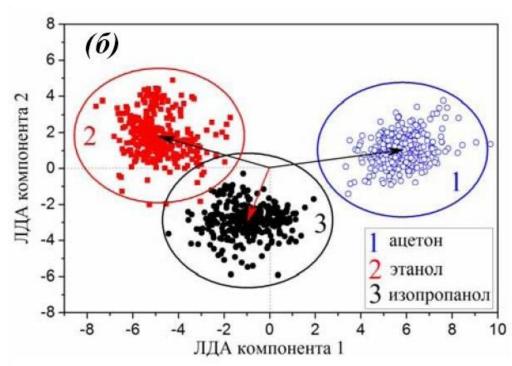
#### Мобильные химические сенсоры

Мобильные сенсоры важны для оперативного мониторинга состава атмосферы на химических предприятиях



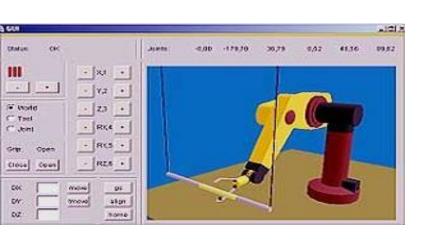
#### **Имплантируемые биосенсоры**

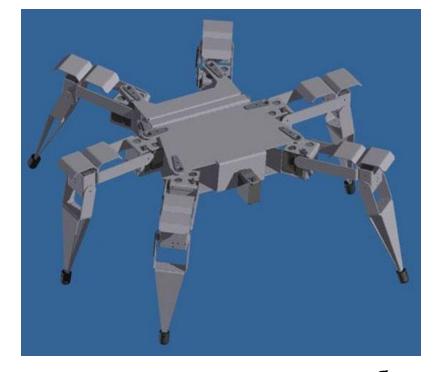




Датчики глюкозы для мониторинга урхара в крови. Такие датчики чрезвычайно важны для людей с заболеваниями эндокринной системы

#### Принцип действия электронного «носа»

обнаружение

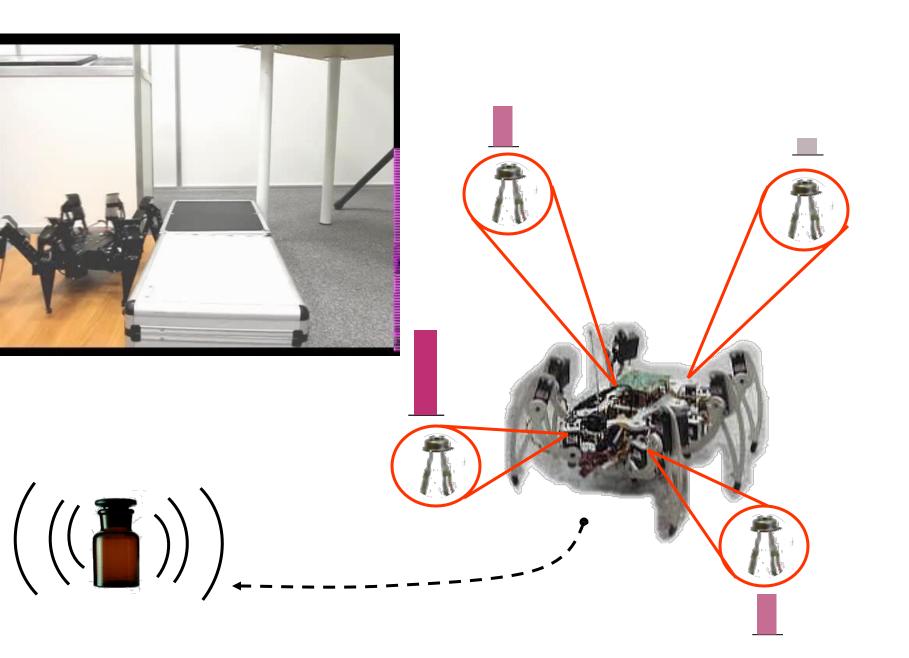

#### распознавание






# Разработка трехмерной модели робототехнической платформы, выполняющих сложные пространственные перемещения и наносистемных датчиков (сенсоров) в системе трехмерного проектирования Pro/ENGINEER

Разработаны эффективные методы удаленного управления роботами Интернет более широко, в случаях управления роботамичерез управляющегоз адеражка ми при нагруженных каналах связи. Методы основаны на использовании "виртуального дублера" - трехмерных моделей робота и его рабочего пространства, функционирующих в масштабе реального времени.






Виртуальный дублер" реального робота.

Трехмерная модель шестиногого робота.

## Концепция робототехнической платформы мониторинга состава окружающей среды на основе наносистемных средств анализа атмосферы



