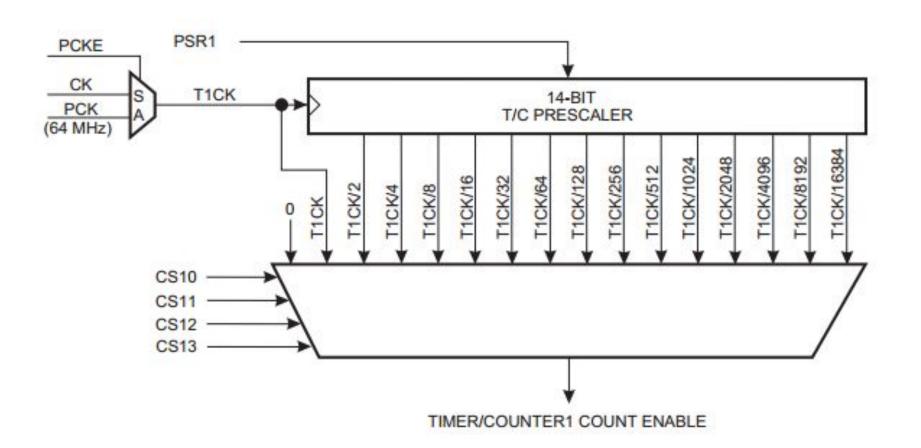
Микропроцессорные устройства

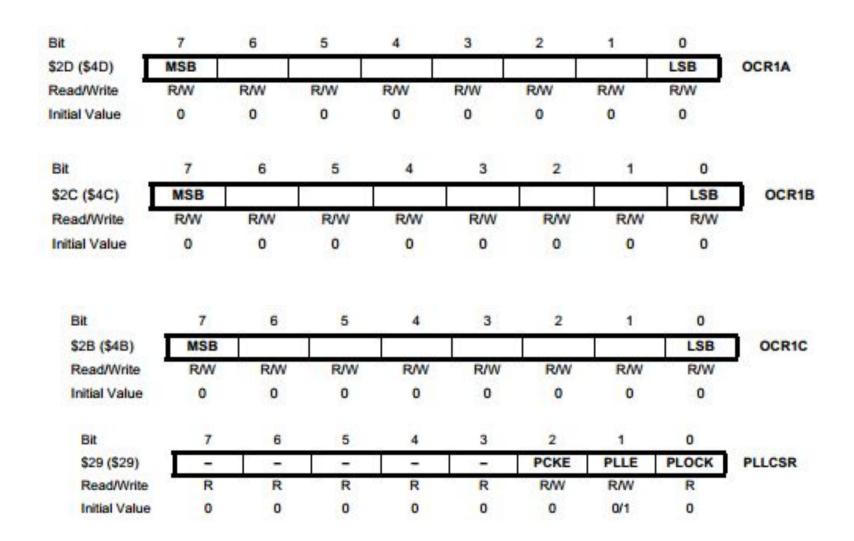
Лекция 5

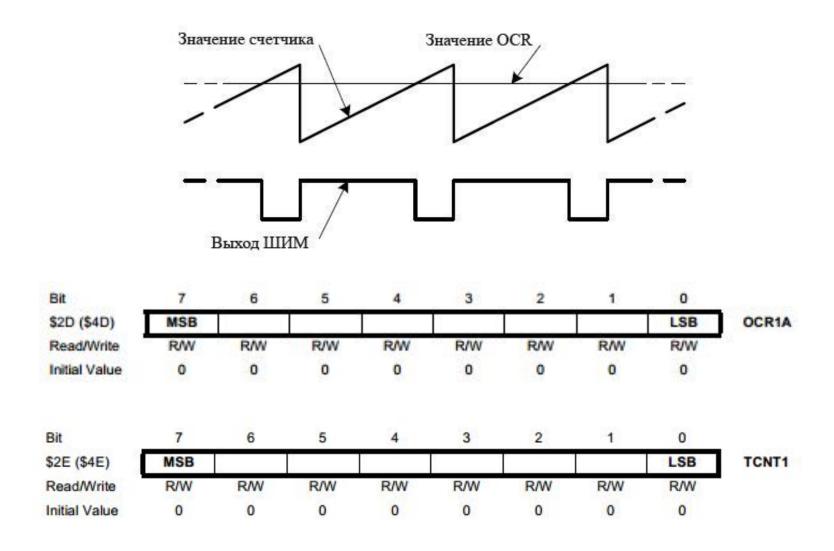

Микроконтроллеры серии AVR

Микроконтроллер ATtiny26 (Векторы прерываний)

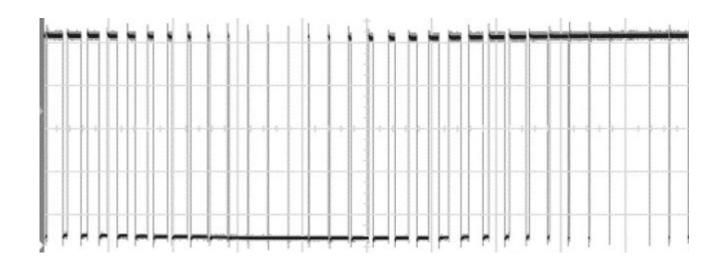
Vector No	Program Address	Source	Interrupt Definition
1	\$000	RESET	Hardware Pin and Watchdog Reset
2	\$001	INTO	External Interrupt Request 0
3	\$002	I/O Pins	Pin Change Interrupt
4	\$003	TIMER1, CMPA	Timer/Counter1 Compare Match 1A
5	\$004	TIMER1, CMPB	Timer/Counter1 Compare Match 1B
6	\$005	TIMER1, OVF1	Timer/Counter1 Overflow
7	\$006	TIMER0, OVF0	Timer/Counter0 Overflow
8	\$007	USI_STRT	USI Start
9	\$008	USI_OVF	USI Overflow
Α	\$009	EE_RDY	EEPROM Ready
В	\$00A	ANA_COMP	Analog Comparator
С	\$00B	ADC	ADC Conversion Complete

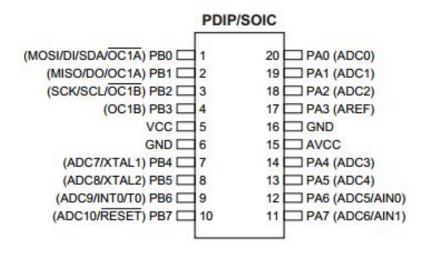
Микроконтроллер ATtiny26 (Векторы прерываний)

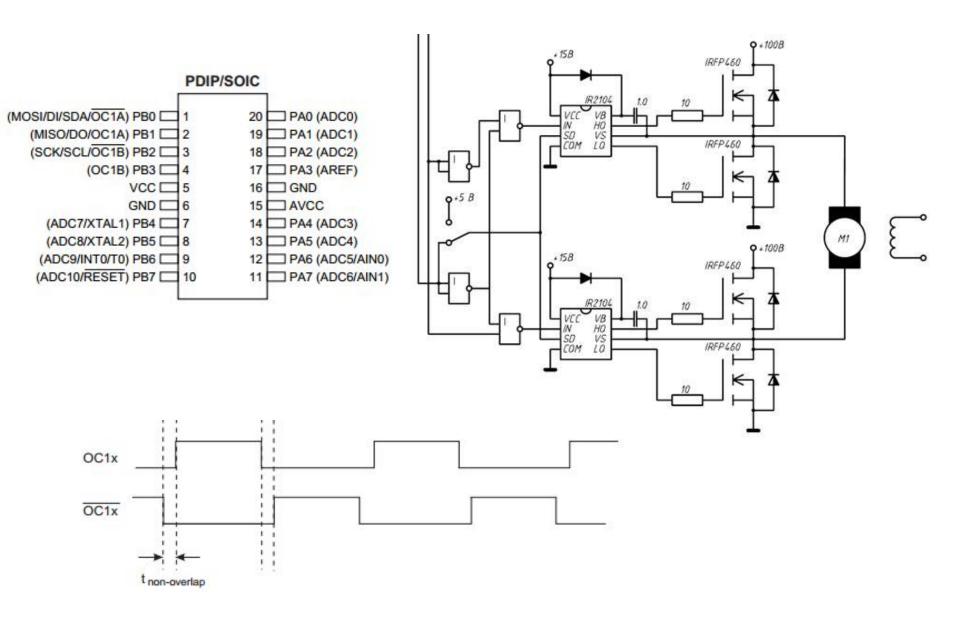

\$000	rjmp	RESET	; Reset handler
\$001	rjmp	EXT_INTO	; IRQO handler
\$002	rjmp	PIN_CHANGE	; Pin change handler
\$003	rjmp	TIM1_CMP1A	; Timer1 compare match 1A
\$004	rjmp	TIM1_CMP1B	; Timer1 compare match 1B
\$005	rjmp	TIM1_OVF	; Timer1 overflow handler
\$006	rjmp	TIMO_OVF	; TimerO overflow handler
\$007	rjmp	USI_STRT	; USI Start handler
\$008	rjmp	USI_OVF	; USI Overflow handler
\$009	rjmp	EE_RDY	; EEPROM Ready handler
\$00A	rjmp	ANA_COMP	; Analog Comparator handler
\$00B	rjmp	ADC	; ADC Conversion Handler



Bit	7	6	5	4	3	2	1	0	
\$2E (\$4E)	MSB				*			LSB	TCNT1
Read/Write	R/W	RW	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
\$38 (\$58)	-	OCF1A	OCF1B	-	-	TOV1	TOV0	-	TIFR
Read/Write	R	R/W	R/W	R	R	R/W	R/W	R	
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
\$39 (\$59)	-	OCIE1A	OCIE1B	(2)	_	TOIE	1 TOIE0	_	TIMSK
Read/Write	R	R/W	R/W	R	R	R/W	R/W	R	established and
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
\$30 (\$50)	COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	PWM1A	PWM1B	TCCR1A
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
\$2F (\$4F)	CTC1	PSR1	-	-	CS13	CS12	CS11	CS10	TCCR1B
Read/Write	R/W	R/W	R	R	R/W	R/W	RW	R/W	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Initial Value	0	0	0	0	0	0	0	0	


Bit	7	6	5	4	3	2	. 1	0	
\$2F (\$4F)	CTC1	PSR1	-	-	CS13	CS12	CS11	CS10	TCCR1B
Read/Write	R/W	R/W	R	R	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	


CS13	CS12	CS11	CS10	Description Asynchronous Mode	Description Synchronous Mode
0	0	0	0	Timer/Counter1 is stopped.	Timer/Counter1 is stopped
0	0	0	1	PCK	СК
0	0	1	0	PCK/2	CK/2
0	0	1	1	PCK/4	CK/4
0	1	0	0	PCK/8	CK/8
0	1	0	1	PCK/16	CK/16
0	1	1	0	PCK/32	CK/32
0	1	1	1	PCK/64	CK/64
1	0	0	0	PCK/128	CK/128
1	0	0	1	PCK/256	CK/256
1	0	1	0	PCK/512	CK/512
1	0	1	1	PCK/1024	CK/1024
1	1	0	0	PCK/2048	CK/2048
1	1	0	1	PCK/4096	CK/4096
1	1	1	0	PCK/8192	CK/8192
1	1	1	1	PCK/16384	CK/16384



Микроконтроллер ATtiny26 (ШИМ)

Микроконтроллер ATtiny26 (ШИМ)

AVR директивы и функции ассемблера

Входная строка может иметь одну из четырёх форм:

```
[метка:] директива [операнды] [Комментарий] [метка:] инструкция [операнды] [Комментарий] Комментарий Пустая строка
```

Комментарий имеет следующую форму:

```
; [Tekcr]
```

Позиции в квадратных скобках необязательны. Текст после точки с запятой (;) и до конца строки игнорируется компилятором. Метки, инструкции и директивы более детально описываются ниже.

```
;*-----
; Начальные установки
.org $013
AAA: reti
MAIN:
      cli
                               ; запрет прерываний
            temp1,high(RAMEND) ; Установили стек
      ldi
            SPH, temp1
      out
            temp1,low(RAMEND)
      ldi
                              ; Установили стек
            SPL, temp1
      out
      ldi
            temp1,0
                               ; Выдали О во все Биты на выходе
          portb, temp1
      out
            portd, temp1
      out
      out
            portc, temp1
```

AVR директивы ассемблера

Директива	Описание
BYTE	Зарезервировать байты в ОЗУ
CSEG	Программный сегмент
DB	Определить байты во флэш или EEPROM
DEF	Назначить регистру символическое имя
DEVICE	Определить устройство для которого компилируется программа
DSEG	Сегмент данных
DW	Определить слова во флэш или EEPROM
ENDM, ENDMACRO	Конец макроса
EQU	Установить постоянное выражение
ESEG	Сегмент EEPROM
EXIT	Выйти из файла
INCLUDE	Вложить другой файл
LIST	Включить генерацию листинга
LISTMAC	Включить разворачивание макросов в листинге
MACRO	Начало макроса
NOLIST	Выключить генерацию листинга
ORG	Установить положение в сегменте
SET	Установить переменный символический эквивалент выражения

Все директивы предваряются точкой.

AVR директивы ассемблера (пример)

```
Константы

      .equ
      PPP2 = 208
      ; UBRR для скорости 416-2400 208-4800 103-9600

      .equ
      PPP3 = 50
      ; 50мс - синхропауза

      .equ
      PPP4 = 2
      ; 2мс - время удержания стоп бита в конце посылки

 .equ dreb_4=3 ; постоянные по подсчету дребезва для импульсных входов .equ dreb_5=6 ;
 .equ dreb_6=2 ; sucmepesuc
 ; Переменные используемые в программе
 .dseg
 timer: .byte 5 ; счемчики для maймеровО
                           ; Всезда первый в определении к ним привязка ОЗУ
 clok: .byte 25 ; Разные часы
                           ; +0 - (1mc)
                           ; +1 - (1mc)
        lds temp1,(clok+9) ; счемчик синхропаузы
              temp1,PPP3
        cpi
        brsh PTXD OUT5
                 PTXD OUTW
        rjmp
PTXD OUT5:
                 temp1,3 ; изменили режим запроса Zapros_TXD,temp1 ;
        ldi
                temp1,3
        sts
        clr
                temp1
                (Data_TXD+20), temp1 ; сброс счетчика передаваемых байт
        sts
```

AVR операторы ассемблера

Приоритет	Символ	Описание	
14	1	Логическое отрицание	
14	~	Побитное отрицание	
14	-	Минус	
13	*	Умножение	
13	1	Деление	
12	+	Суммирование	
12	-	Вычитание	
11	<<	Сдвиг влево	
11	>>	Сдвиг вправо	
10	<	Меньше чем	
10	<=	Меньше или равно	
10	>	Больше чем	
10	>=	Больше или равно	
9		Равно	
9	!=	Не равно	
8	&	Побитное И	
7	^	Побитное исключающее ИЛИ	
6	1	Побитное ИЛИ	
5	&&	Логическое И	
4	11	Логическое ИЛИ	

AVR функции ассемблера

LOW(выражение) возвращает младший байт выражения HIGH(выражение) возвращает второй байт выражения BYTE2(выражение) то же что и функция HIGHBYTE3(выражение) возвращает третий байт выражения BYTE4(выражение) возвращает четвёртый байт выражения LWRD(выражение) возвращает биты 0-15 выражения HWRD(выражение) возвращает биты 16-31 выражения PAGE(выражение) возвращает биты 16-21 выражения EXP2(выражение) возвращает 2 в степени (выражение) LOG2(выражение) возвращает целую часть log2(выражение)

```
; Начальные установки
.org
       $013
AAA:
      reti
MAIN:
       cli
                                       ; запрем прерываний
        ldi
               temp1, high(RAMEND)
                                       ; Установили стек
               SPH, temp1
        out
               temp1,low(RAMEND)
                                       : Установили стек
        ldi
               SPL, temp1
        out
                                       ; Выдали О во все биты на выходе
        ldi
               temp1,0
               portb, temp1
        out
               portd, temp1
        out
               portc, temp1
        out
```