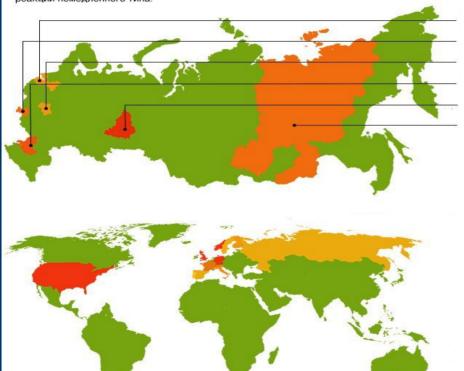

Моллекулярная аллергодиагностика — будущее аллергологии сегодня

Сверчкова В.П. 12 группа 4 курс Лечебное дело

Колхир П.В. Аллергология и иммунология.- 2010г

• «С каждым годом заболеваемость аллергией непрерывно растет как среди взрослых, так и среди детей. По данным разных авторов, аллергические болезни поражают до 30-50% населения Земли»

Статистика заболевание астмой в мире



Распространенность аллергии на примере аллергтческого ринита.

МЕСТА РАСПРОСТРАНЕНИЯ АЛЛЕРГИИ В МИРЕ

AllergyFree.a

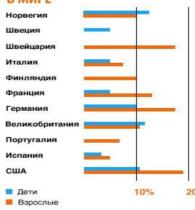
Аллергический ринит, известный также как «сенная лихорадка» — воспалительное заболевание слизистой носа, характеризующеесмя эпизодическим нарушением назального дыхания, слизистыми выделениями из носа, чиханием, в основе которых лежат аллергические реакции немедленного типа.

В РОССИИ

Ленинградская область - 13%

Брянская область -15%

Московская область - 12%


Ростовская область - 19%

Свердловская область -34%

Восточная Сибирь -5,2 - 16,4%

АР в разных регионах России страдают от 3,3 до 35% (в среднем - 16,5%)

В МИРЕ

В среднем, в мире АР страдают от 10 до 30% всего населения в экологически неблагоприятных районах эта цифра достигает 50%

ДИАГНОЗ АР ОПАСНЕЕ, ЧЕМ МОЖЕТ ПОКАЗАТЬСЯ:

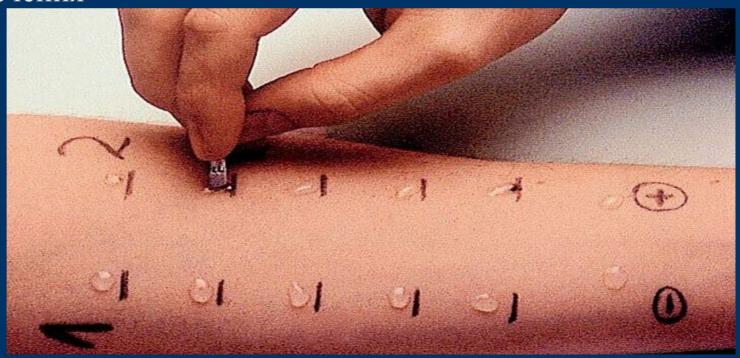
Аллергически ринит является одним из самых распространенных хронических заболеваний, особенно среди лиц до 18 лет

Проявления AP часто предшествует развитию бронхиальной астмы (у 32-49% больных). А при ее наличии, ухудшают ее течения

Кроме того, AP способствует развитию других заболеваний ЛОР-органов (у 24% детей аллергический ринит является предрасполагающим фактором для развития острого и хронического среднего отита, в 28% случаев –хронического риносинусита).

₋Аллергия

• Аллергия – состояние гиперчувствительности организма на некоторые вещества (аллергены), возникающая после их повторного воздействия.


Типы аллергических реакций

	Туре І	Type II	Type III	rymmini.	Type IV	
Immune reactant	IgE	lgG	IgG	T _H 1 cells	T _H 2 cells	CTL
Antigen	Soluble antigen	Cell- or matrix- associated antigen	Soluble antigen	Soluble antigen	Soluble antigen	Cell-associated antigen
Effector mechanism	Mast-cell activation	FcR ⁺ cells (phagocytes, NK cells)	FcR ⁺ cells Complement	Macrophage activation	Eosinophil activation	Cytotoxicity
	Ag Ag	platelets \$\frac{1}{2}\$	blood vessel	IFNY THI	IL-4 to eotaxin	© CTL
				chemokines, cytotoxins	cytotoxins, inflammatory mediators	
Example of hypersensitivity reaction	Allergic minitis, asthma, systemic anaphylaxis	Some drug allergies (e.g., penicillin)	Serum sickness, Arthus reaction	Contact dermatitis, tuberculin reaction	Chronic asthma, chronic allergic rhinitis	Contact dermatitis

Диагностика аллергий раньше

- Сбор анамнеза
- Кожные аллергические пробы
- Провокационные тесты

• Подбор лечения

Диагностика аллергий сейчас

- Сбор анамнеза
- Кожные аллергические пробы
- Моллекулярная аллергодиагностика
- . Подбор лечения

Молекулярная диагностика аллергий

Моллекулярная аллергодиагностики/компонентная диагностика

 выявление сенсибилизации к аллергенам на молекулярном
 уровне с использованием природных высоко очищенных и
 рекомбинантных молекул аллергенов, то есть их компонентов,
 а не экстрактов.

ПРЕИМУЩЕСТВА Молекулярной диагностики (1)

- Молекулярная аллергодиагностика помогают осуществить точный подбор препарата для аллерген-специфической иммунотерапии (АСИТ) и прогноз эффективности лечения.
- Для описания частоты встречаемости аллергокомпонентов применяются термины «мажорные» и «минорные».

Аллергены

- <u>Мажорные</u> (главные) аллергены (белки) это обычно видоспецифические белки. Обычно они устойчивые к нагреванию и более крупные по размеру, а также содержатся в данном аллергене в большем количестве.
- <u>Минорные</u> (второстепенные) это обычно белки, которые меньше по размеру и количеству. Встречаются одновременно в нескольких аллергенах и именно из-за них развивается перекрестная аллергия.
- Например: белок клещей домашней пыли тропомиозин Der p 10 входит в состав белков не только клещей, но и ракообразных, тараканов, аскарид. По этому, при развитии сенсибилизации к данному белку, у пациента будет наблюдаться не только заложенность носа и кашель на пыль, содержащей клещи, но и реакция на ракообразные, морепродукты (возможно в виде крапивницы или отека Квинке).

Таблица 1. Примеры первичных и перекрестно-реагирующих аллергокомпонентов

	Первичная сенсибилизация	Кросс- реактивность
Растительная пища		
Арахис	Ara h 1, Ara h 2, Ara h 3, Ara h 6, Ara h 9	Ara h 8
Соя	Gly m 5, Gly m 6, Gly m 2S	Gly m 4
Яблоко		Mal d 1
Сельдерей	Api g 1	Api g 1
Морковь	Dau c 1	Dau c 1, Dau c 4
Пыльца		
Амброзия	Amb a 1	
Полынь	Art v 1, Art v 3	Art v 3
Постенница	Par j 2	Parj 2
Тимофеевка луговая	Phl p 1, Phl p 5	Phl p 7, Phl p 12
Береза бородавчатая	Bet v 1	Bet v 1, Bet v 2, Bet v 4
Животная пища		
Яйцо белок	Gal d 1, Gal d 2,	Gal d 5
	Gal d 3 кональбумин (овотрансферрин), Gal d 4 (лизоцим)	
Яйцо желток	Gal d 5	
Молоко	Bos d 4 (альфа-лакальбумин),	Bos d 6
	Bos d 5 (бета-лакальбумин),	(сывороточный альбумин)
	Bos d 6 (сывороточный альбумин),	
	Bos d 8 (казеин)	

Прогноз эффективности АСИТ (1)

- АСИТ будет эффективной в случае наличия специфических IgE к мажорным компонентам аллергена и отсутствии к минорным. В случае выявления специфических IgE к экстракту, (например, t3 «береза»), определение специфических антител к компонентам (Bet v 1, Bet v 2, Bet v 4) позволяет прогнозировать эффективность аллергоспецифической иммунотерапии.
- Прогноз эффективности АСИТ на примере тестирования компонентов аллергенов пыльцы березы, t3 приведен ниже. В пыльце березы мажорным компонентом является Bet v 1, а минорными Bet v 2 и Bet v 4

Прогноз эффективности АСИТ (2)

Таблица 3. Прогноз эффективности АСИТ, береза

Bet v 1 «+»	Bet v 1 «+»	Bet v 1 «-»
Bet v 2, Bet v 4 «-»	Bet v 2, Bet v 4 «+»	Bet v 2, Bet v 4«+»/«-»
Высокая	Средняя	Слабая

Эффективность АСИТ будет высокой для пациентов, имеющих IgE только к Bet v 1. В случае наличия специфических IgE как к мажорному, так и к минорным компонентам, эффективность будет средней. АСИТ будет малоэффективна в случае отсутствия IgE к мажорному компоненту.

Таблица 4. Прогноз эффективности АСИТ, тимофеевка

Phl p 1, Phl p 5; «+»	Phl p 1, Phl p 5; «+»	Phl p 1, Phl p 5; «-»
Phl p 7, Phl p 12;	Phl p 7, Phl p 12; «+»	Phl p 7, Phl p 12;
«-»		«+»/«-»
Высокая	Средняя	Слабая

Эффективность АСИТ будет высокой для пациентов, имеющих IgE только к мажорным аллергокомпонентам PhI p 1 и PhI p 5. В случае наличия специфических IgE как к мажорным, так и к минорным компонентам, эффективность будет средней. АСИТ будет малоэффективна в случае отсутствия IgE к мажорным компонентам PhI p 1 и PhI p 5.

ПРЕИМУЩЕСТВА Молекулярной диагностики (2)

• Молекулярная аллергодиагностика дает возможность дифференцировать истинную реакцию и псевдореакцию.

ПРЕИМУЩЕСТВА Молекулярной диагностики (3)

- Прогноз тяжести аллергических реакций.
- Яйца: Примерно 80% от общего белка, составляют 4 аллергена: овомукоид (Gal d 1, 11%), овальбумин (Gal d 2, 54%), кональбумин, овотрансферрин (Gal d 3, 12%) и лизоцим (Gal d 4, 3%).
- Овомукоид основной аллерген, сильно гликозилированный белок, устойчивый к протеазам и термической обработке, способный сохранять свои иммуногенные свойства даже после обработки при 100°С в течение часа.
- Овальбумин является фосфорилированным гликопротеином, в четыре раза превышающим по количеству овомукоид. Термически устойчивый белок, иммуногенность которого, по некоторым данным, снижается после воздействия высоких температур.
- Кональбумин (ион связывающий гликопротеин) и лизоцим (гликозидаза), который часто встречается в составе многих продуктов из-за своих антибактериальных свойств, не устойчивы к термической обработке. Таким образом, определение антител к овомукоиду и овальбумину позволяет врачу определить необходимость назначения строгой диеты.

Прогноз тяжести аллергических реакций

Таблица 2. Прогноз частоты и тяжести клинических симптомов на примере наличия или отсутсвия IgE к экстракту «Яичный белок», f1 и компоненту белка яйца «nGal d 1 Овомукоид», f68

	«Яичный белок», f1 + «n Gal d 1 Овомукоид»				
Результаты тестирования	Яичный белок «-» Овомукоид «-»	Яичный белок «+» Овомукоид «-»	Яичный белок «+» Овомукоид «+»		
Интерпретация результатов	Низкий риск клинических проявлений на яйцо	Риск клинических проявлений на яйцо	Высокий риск клинических проявлений на яйцо		
Прогноз	Низкий риск аллергии на яйцо	Отсутствие IgE к овомукоиду допускает прием в пищу термически обработанного яйца	Высокий риск постоянной аллергии на яйцо		

• Понимание структуры белка, принадлежности к белковому семейству, а также термостабильности и устойчивости к гидролизу, позволяет врачу прогнозировать переносимость различных пищевых продуктов, прогнозировать эффективность АСИТ и степень тяжести клинических реакций, что позволяет составить индивидуальный профиль чувствительности пациента для назначения правильной и своевременной терапии.

Спасибо за внимание!