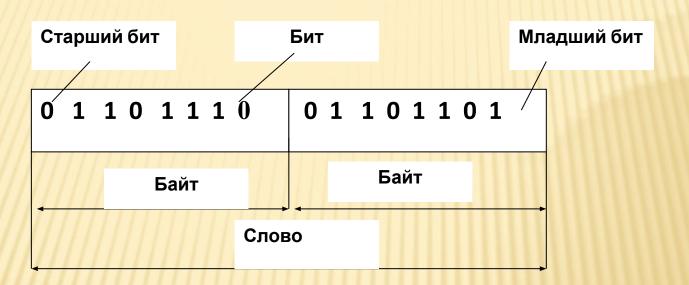
ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В ЦИФРОВЫХ АВТОМАТАХ

- 1. Представление числовой информации в цифровых автоматах.
- 2. Представление целых чисел.
- 3. Прямой, обратный и дополнительный коды.
- 4. Представление вещественных чисел в ЭВМ (C/P).


1. ПРЕДСТАВЛЕНИЕ ЧИСЛОВОЙ ИНФОРМАЦИИ В ЦИФРОВЫХ АВТОМАТАХ

Информация в памяти ЭВМ записывается в форме цифрового двоичного кода.

С этой целью ЭВМ содержит большое количество ячеек памяти и регистров для хранения двоичной информации.

Большинство этих ячеек имеет одинаковую длину **n**, т.е. они используются для хранения **n** бит двоичной информации.

Информация, хранимая в такой ячейке, называется *словом*.

Ячейки памяти и регистры состоят из элементов памяти. Каждый из таких электрических элементов может находиться в одном из двух устойчивых состояний:

- □ конденсатор заряжен или разряжен,
- транзистор находится в проводящем или непроводящем состоянии,
- специальный полупроводниковый материал имеет высокое или низкое удельное сопротивление и т.п.

Одно из таких физических состояний создает высокий уровень выходного напряжения элемента памяти, другое – низкий.

Обычно это электрическое напряжение порядка **4-5 B** и **OB** соответственно, причем первое обычно принимается за двоичную единицу, а второе – за двоичный ноль.

ГРАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ ДВОИЧНОГО СИГНАЛА

На рис. показан выходной сигнал такого элемента памяти (например, одного разряда регистра).

При изменении его состояний (при переключениях) под воздействием некоторого входного сигнала переход от нуля к 1 и от 1 к нулю происходит не мгновенно.

Однако в определенные моменты времени этот сигнал достигает значений, которые воспринимаются элементами ЭВМ как ноль или 1.

Память ЭВМ состоит из конечной последовательности слов, а слова - из битов. конечной последовательности Поэтому объем представляемой в ЭВМ информации ограничен емкостью памяти, а числовая информация может быть представлена только с определенной точностью, зависящей от архитектуры памяти данной ЭВМ.

ФОРМЫ ПРЕДСТАВЛЕНИЯ ДВОИЧНЫХ ЧИСЕЛ:

- С ФИКСИРОВАННОЙ ЗАПЯТОЙ (ЕСТЕСТВЕННАЯ ФОРМА)
- С ПЛАВАЮЩЕЙ ЗАПЯТОЙ (НОРМАЛЬНАЯ ФОРМА)

В компьютерной технике для представления чисел широко используются две формы: естественная и нормальная

При естественной форме представления число имеет единственный вид записи

$$A = (a_n a_{n-1} \dots a_1 a_0 \dots a_{-1} \dots a_{-m+1} a_{-m})_q$$

q - основание СС (обычно q=2)

точкой (вместо запятой) число разделено на две части, одна из которых отражает целую часть числа, другая – дробную (правильную дробь)

например:

- +195 целое положительное число
- -195 целое отрицательное число
- +0.125 правильная положительная дробь
- -195.025 неправильная отрицательная дробь

Естественная форма используется для целых чисел и чисел с фиксированной точкой (запятой)

При нормальной форме представления число записывается в виде:

$$A = M * q^p$$

М,Р мантисса и порядок числа

Для нормальной формы представления характерна неоднозначная запись числа, например:

+195.025 =

+195025*10-3 =

+0.195025*103

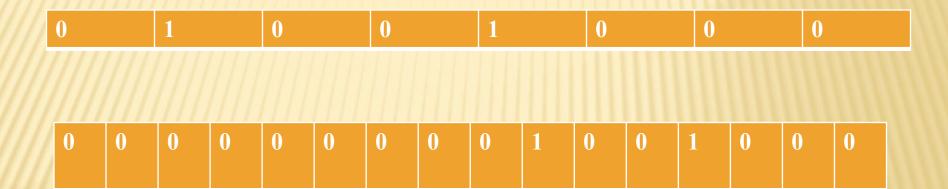
Нормализованной форме соответствует представление чисел с плавающей точкой

Двоичные коды числа имеют различные форматы.

Формат числа представляет собой совокупность разрядов (разрядную сетку), разделенную на отдельные поля: поле знака числа, поле модуля числа или мантиссы, поле модуля порядка.

В поле знака символом 0 обозначается знак положительного числа, символом 1 – знак отрицательного числа.

2. ПРЕДСТАВЛЕНИЕ ЦЕЛЫХ ЧИСЕЛ ЦЕЛЫЕ ЧИСЛА БЕЗ ЗНАКА


Обычно занимают в памяти компьютера один или два байта.

В однобайтовом формате принимают значения от 0000000_2 до 11111111_2 . В двубайтовом формате – от 0000000000000000_2 до 111111111_2 . 11111111_2 .

ДИАПАЗОН ЗНАЧЕНИЙ ЦЕЛЫХ ЧИСЕЛ БЕЗ ЗНАКА

Формат числа- в байтах	диапазон	
	запись с порядком	обычная запись
1	028-1	0255
2	02 ¹⁶ -1	065535

72₁₀ В ОДНОБАЙТОВОМ И ДВУБАЙТОВОМ ФОРМАТЕ

ЦЕЛЫЕ ЧИСЛА СО ЗНАКОМ

ЦЕЛЫЕ ЧИСЛА СО ЗНАКОМ ОБЫЧНО ЗАНИМАЮТ В ПАМЯТИ КОМПЬЮТЕРА ОДИН, ДВА ИЛИ 4 БАЙТА.

Формат числа в байтах	диапазон	
	запись с порядком	обычная запись
1	-2 ⁷ 2 ⁷ - 1	-128127
2	-2 ¹⁵ 2 ¹⁵ -1	-3276832767
4	-2 ³¹ 2 ³¹ -1	-2147483648

3. ПРЯМОЙ, ОБРАТНЫЙ И ДОПОЛНИТЕЛЬНЫЙ КОДЫ

В цифровых автоматах применяются три формы записи (кодирования) целых чисел со знаком:

- 🛮 прямой,
- 🛮 дополнительный,
- 🛮 обратный код.

прямой код

Прямой n-разрядный код отличается от двоичного тем, что в нем отводится один, как правило, самый старший разряд для знака, а оставшиеся n-1 разрядов - для значащих цифр.

Значение знакового разряда равно:

0 – для чисел A₂>0

1 – для чисел $A_2 < 0$.

ПРИМЕРЫ

(прямой код)

- 1₁₀ 0000001
- 127₁₀01111111
- -1₁₀ 1000001
- -127₁₀11111111

ДЛЯ ПРЯМОГО КОДА СПРАВЕДЛИВО СЛЕДУЮЩЕЕ COOTHOWEHUE:

$$A_{10} = (-1)^{a_{3H}} \sum_{i=0}^{n-2} a_i 2^i$$

дополнительный код.

Использование чисел со знаком (прямого кода представления чисел) усложняет структуру ЭВМ.

В этом случае операция сложения двух чисел, имеющих разные знаки, должна быть заменена на операцию вычитания меньшей величины из большей и присвоения результату знака большей величины.

Поэтому, в современных ЭВМ, как правило, отрицательные числа представляют в виде дополнительного или обратного кода, что при суммировании двух чисел с разными знаками позволяет заменить вычитание на обычное сложение и упростить тем самым конструкцию арифметико-логического устройства компьютера.

Смысл перевода отрицательных чисел из прямого в дополнительный и обратный коды поясним на примере с десятичными числами.

Допустим, ЭВМ, которая оперирует с двухразрядными десятичными числами, должна сложить два числа X_1 =84 и X_2 = - 32 Заменим код отрицательного слагаемого X_2 его дополнением до 100, так чтобы

$$X_{2\,\partial o n}$$
=100+ X_{2} =68
Сложив числа X_{1} + $X_{2\,\partial o n}$ получим:
 $Y=X_{1}$ + $X_{2\,\partial o n}$ =84+68=152

Учитывая, что вычисления проводятся на устройстве с двумя десятичными разрядами, конечный результат будет равен **52**.

Равенство полученного результата истинному объясняется тем, что при формировании дополнительного кода к X_2 мы прибавляли 100, а затем из результата вычитали 100 отбрасыванием старшего разряда:

$$Y=X_1+X_{2\partial o \pi}$$
-100 = $X_1+[X_2+100]$ -100 = 84+[-32+100]-100=52

Операция вычитания 100 заключается в том, что не учитывается код третьего десятичного разряда.

ЕСТЬ <u>ПРОСТОЕ ПРАВИЛО ПОЛУЧЕНИЯ</u> ДОПОЛНЕНИЯ ДВОИЧНЫХ ЧИСЕЛ:

- Получить инверсию заданного числа (все 0 заменить на 1, а все 1 на 0)
- Образовать дополнительный код заданного числа путем добавления 1 к инверсии этого числа

0 000 0010 1100 0101 число 1 111 1101 0011 1010 инверсия числа

1 111 1101 0011 1010 инверсия числа + 1 слагаемое 1

1 111 1101 0011 1011 дополнительный код числа

Проверим правильность перевода: 0 000 0010 1100 0101

1 111 1100 0011 1011

10 000 0000 0000 0000

Так как перенос из старшего разряда не учитывается, то результат суммирования равен **0**, что подтверждает правильность преобразования.

Старший бит дополнительного кода двоичных чисел выполняет функцию знака числа, т.е. равен **О** для положительных чисел, и **1** – для их дополнений (отрицательных чисел).

При этом положительные числа в дополнительном коде изображаются так же, как и в прямом, - двоичными кодами с цифрой **0** в знаковом разряде.

ДЛЯ ДОПОЛНИТЕЛЬНОГО КОДА СПРАВЕДЛИВО СЛЕДУЮЩЕЕ COOTHOWEHUE:

$$A_{10} = a_{3H}(-2^{n-1}) + \sum_{i=0}^{n-2} a_i 2^i$$

ОБРАТНЫЙ КОД

Для представления отрицательных чисел используется также *обратный код*, который получается *инвертированием* всех цифр двоичного кода абсолютной величины числа: ноли заменяются единицами, а единицы – нулями.

При этом необходимо помнить, что операции с отрицательными числами выполняются в формате машинного слова. (дописываются нули недостающие)

ПРИМЕРЫ

1) Число: -1 Код модуля числа: 0000001 Обратный код числа: 11111110

2) Число: -127 Код модуля числа: 01111111 Обратный код числа: 1000000

ДЛЯ ОБРАТНОГО КОДА СПРАВЕДЛИВО СООТНОШЕНИЕ:

$$A_{10} = a_{3H}(-2^{n-1}+1) + \sum_{i=0}^{n-2} a_i 2^i$$

Таким образом, положительные числа в прямом, обратном и дополнительном кодах изображаются одинаково – двоичными кодами с цифрой 0 в знаковом разряде.

Обычно отрицательные десятичные числа при вводе в машину автоматически преобразуются в обратный или дополнительный двоичный код и в таком виде хранятся, перемещаются и участвуют в операциях. При выводе таких чисел из машины происходит обратное преобразование в отрицательные десятичные числа.

4. ПРЕДСТАВЛЕНИЕ ВЕЩЕСТВЕННЫХ ЧИСЕЛ В КОМПЬЮТЕРЕ

С/Р, РЕФЕРАТИВНАЯ РАБОТА