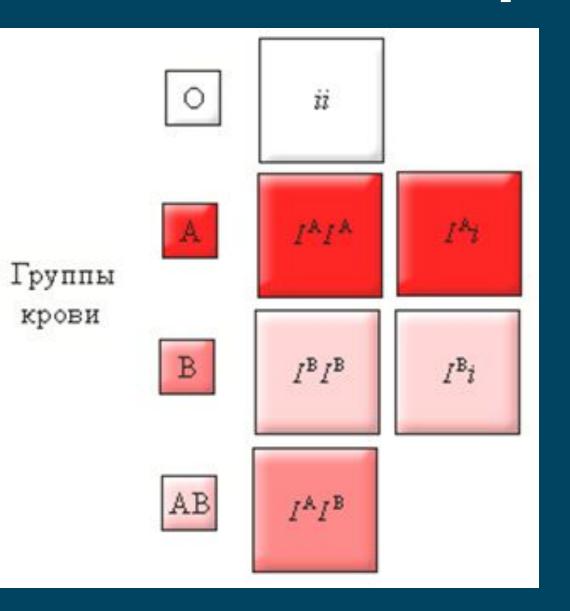

Генетика человека с основами медицинской генетики

Группы крови.

Группы крови системы AB0 как пример множественного аллелизма и кодоминирования

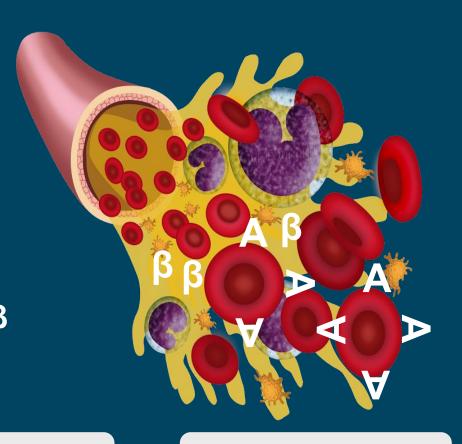

- Группы крови АВО определяются локусом в хромосоме 9.
- Аллели A, B и 0 в этом локусе классический пример мультиаллелизма, когда три аллеля, два из которых (A и B) наследуются как кодоминантные, а третий (0) как рецессивный признак, определяют четыре фенотипа.
- Антигены А и В определяются действием аллелей А и В на поверхностный гликопротеид эритроцитов, названный антигеном Н. Специфичность антигенов определяется концевыми углеводами, добавляемыми к субстрату Н.
- Аллель В кодирует гликозилтрансферазу, преимущественно опознающую сахар D-галактозу и добавляющую его к концу цепочки олигосахаридов, содержащейся в антигене H, тем самым создавая антиген B.
- Аллель А кодирует немного отличающуюся форму фермента, распознающую и добавляющую к субстрату вместо D-галактозы N-ацетилгалактозамин, создавая тем самым антиген A.
- Третий аллель, 0, кодирует мутантную версию трансферазы, не обладающую трансферазной активностью и не влияющую на субстрат Н.

Множественный аллелизм

Пример множественного аллелизма у человека — наследование групп крови ABO

Кодоминирование

проявление у гибридов нового признака, обусловленного взаимодействием двух доминантных аллелей одного гена.


Антигены -вещества белкового или углеводного происхождения. Находящиеся на поверхности клеток (тромбоцитов, лейкоцитов, эритроцитов, белков плазмы) фрагменты обладают антигенностью.

Антитела - это белки-иммуноглобулины, которые циркулируют в плазме крови и специфично связываются с антигенами.

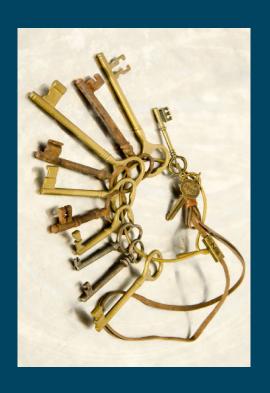
На мембране эритроцитов располагаются антигены A и B (агглютиногены).

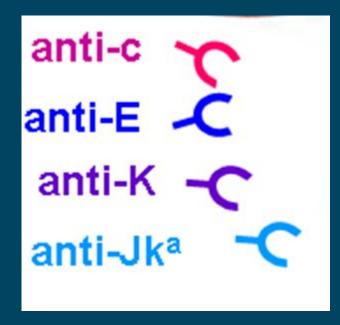
В плазме крови растворены антитела α и β (агглютинины).

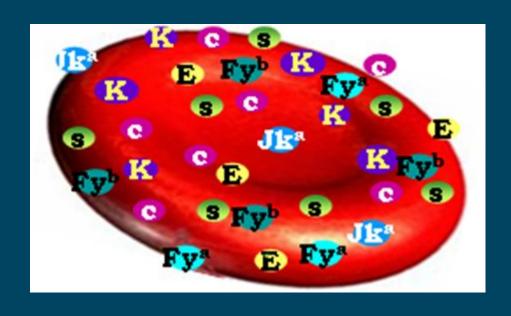
антиген А

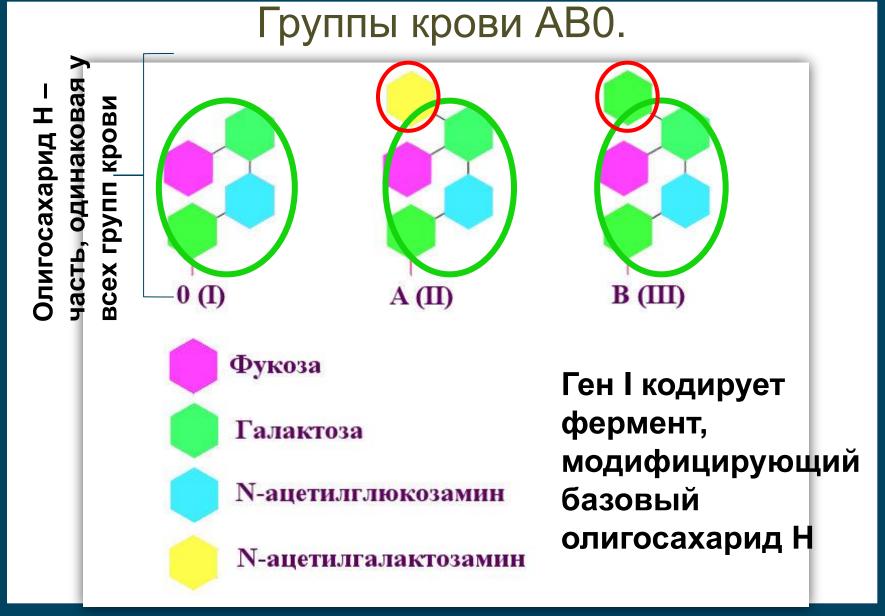
антитело α

агглютинация






Поверхность эритроцитов покрыта антигенами.
 Идентифицировано более 400 <u>эритроцитарных</u> <u>антигенов</u> –крови [MNS, P, Lutheran (LU), Kell, Lewis (LE), Duffy (FY), Kidd (JK), Diego (DI)] и т.д



- Антитела к антигенам эритроцитов систем ABO, Резус и других клинически значимых систем групп по своей химической структуре являются иммуноглобулинами и синтезируются иммунокомпетентными клетками. Антитела по отношению к групповым антигенам системы ABO бывают:
- «нормальные», естественно возникающие в процессе формирования организма, и
- «иммунные», проявляющиеся в результате иммунизации человека.

Антигены эритроцита

Антигенные детерминанты групп крови АВО — это олигосахариды на поверхности эритроцитов и других клеток Антигены эритроцитов человека являются структурными образованиями, расположенными на внешней поверхности мембраны эритроцитов, обладающими способностью взаимодействовать с соответствующими антителами и образовывать комплекс антиген-антитело.

В настоящее время известно более 400 антигенов эритроцитов, которые объединяются в 27 систем. Для каждого человека характерен свой набор этих антигенов, представленный на мембране эритроцитов, который называется фенотипом.

Широкое типирование антигенов эритроцитов для реципиентов гемокомпонентов не требуется. В норме к антигенам всех эритроцитарных систем, за исключением системы АВО, антител быть не должно.

- Антигены AB0 присутствуют на эритроцитах, лейкоцитах, тромбоцитах, тканевых клетках, жидкостях организма, секретах. Антигены системы AB0 развиваются на эритроцитах ещё до рождения ребёнка.
- Клиническая роль многочисленных антигенов эритроцитов крови человека неодинакова. Клиническое значение антигенов определяется способностью аллоантител к данным антигенам вызывать разрушение эритроцитов в организме реципиента. В этом аспекте первостепенное клиническое значение имеют антигены системы ABO и Резус. Меньшее клиническое значение других антигенов эритроцитов объясняется низкой иммуногенностью антигенов и, соответственно, редкой выработкой антител.

Антитела, агглютинины

Изоиммунные - врожденные антитела Иммуные антитела возникают вследствие

- 1.Изоиммунизации при парентеральном поступлении в организм несовместимого в отношении антигена,при ошибочном переливании крови, несовместимым по системе ABO,резус-фактору (C,c,E,e) и другим антигенам M,N, S, Келл,Кидд,Даффи,Левис и т.д.
- 2.При проведении некоторых прививок, иммунизаций

- Иммунные антитела различают полные и неполные антитела.
- Полные антитела

Относятся преимущественно к классу IgM

- <u>Неполные антитела</u>принадлежат в основном к иммуноглобулинам класса IgG, они способны фиксироваться на эритроцитах, не вызывая аглютинации.
- Тогда аглютинация (склеивание) происходит только в присутствии протеолитических ферментов, коллоидных растворов, при введении антиглобулиновой сыворотки.

Потеря большого количества крови опасна для жизни.

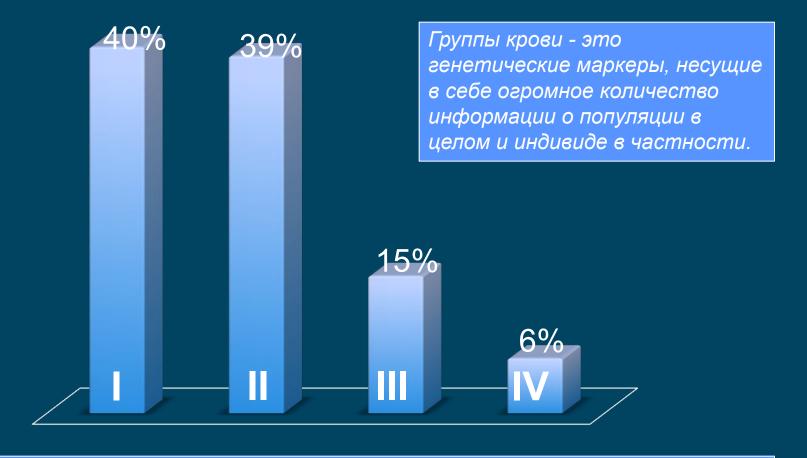
Единственный способ помочь пострадавшему — переливание крови.

Донор – человек, отдающий свою кровь.

Реципиент – человек, получивши переливание крови от донора.

Осложнения, вызванные переливанием крови, эритроцитной массы, несовместимой по групповым факторам системы ABO

• Причиной таких осложнений в подавляющем большинстве случаев является невыполнение правил, предусмотренных инструкциями по технике переливания крови, по методике определения групп крови АВО и проведения проб на совместимость.

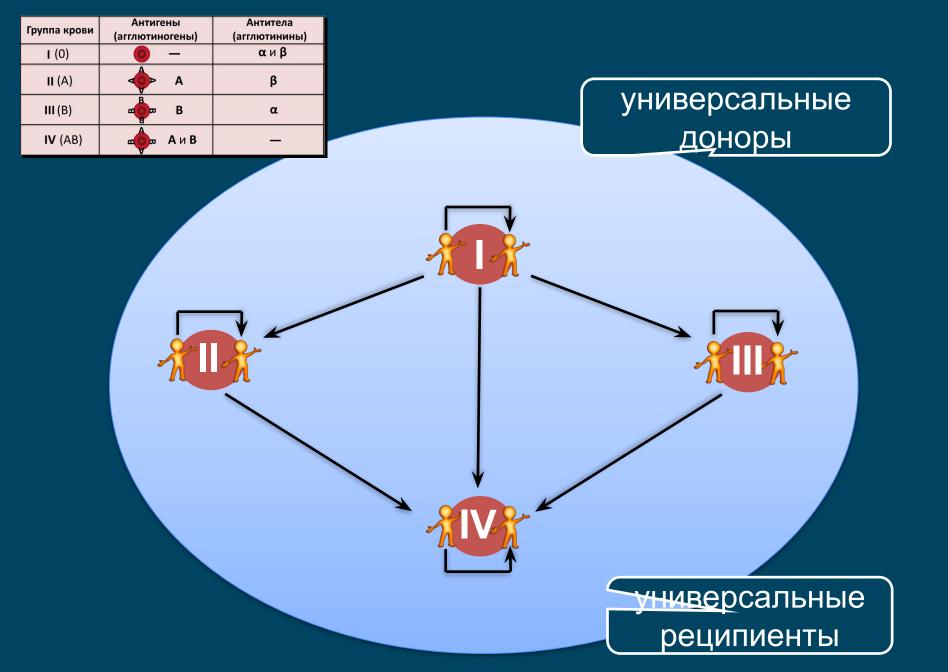

Иммунная гемолитическая трансфузионная реакция- ABOнесовместимость

- Последствия переливания АВО-несовместимой крови может начаться уже после введения нескольких миллилитров крови.
- Высвобождение белков комплимента C5,C6,C7,C8,C9 ведет к разрушению эритроцитов –гемолиз (в мембране эритроцитов образуются отверстия)
- Белки комплемента С3а,С5а запускают воспалительный ответ (падение АД, шок, почечная недостаточность, ДВС)

Группы крови

Группа крови	Антигены (агглютиногены)	Антитела (агглютинины)
I (0)		αиβ
II (A)	A P	β
III(B)	B B C	α
IV (AB)	м AиB	

Распределение групп крови у населения нашей страны



Разные группы крови встречаются во всех популяциях, но неравномерно распределены по всему миру

Резус-фактор

Резус	Антигены	Частота встречаемости
Rh (+)	+++++	85%
Rh (—)		15%

NBI В отличие от системы AB0 естественные антитела в системе Резус крови не встречаются. Они относятся к иммунным антителам.

Таблица совместимости крови донора и реципиента по системам ABO и резус.

Группа крови	Донор для людей с	Реципиент для людей с		
A+	A+, AB+	A+, A-, 0+, 0-		
0+	0+, A+, B+, AB+	0+, 0-		
B+	B+, AB+	B+, B-, 0+, 0-		
AB+	AB+	Любая группа		
A-	A+, A-, AB+, AB-	A-, 0-		
0-	Любая группа	0-		
В-	B+, B-, AB+, AB-	В-, 0-		
AB-	AB+, AB-	AB-, A-, B-, 0-		

- Даже если донорская кровь совместима с кровью реципиента по системе ABO, <u>остается риск гемолитической трансфузионной реакции при наличии в плазме пациента других эритроцитарных антител</u> (С,с, Е,е, Д, Келл, Даффи,Кидд)
- При попадании в организм антигена, отсутствующего у данного индивида, создаются предпосылки для выработки антител и развития <u>аллосенсибилизации.</u>
- Синтез антител может наблюдаться в ответ на гемотрансфузии или беременность. При последующих гемотрансфузиях может произойти взаимодействие антигенов эритроцитов доноров и антител реципиентов, что приводит к посттрансфузионному осложнению.
- Образование антител достигает максимума на 5-7-10-25 день (повышение титра в 3-8 ступеней) с последующим падением титра. Разрушение эритроцитов может вызвать анемию и умеренную желтуху.

- Одним из основных факторов безопасности гемотрансфузионной терапии является обеспечение переливания иммунологически совместимой среды.
- Для этого необходимо соблюдать правила подбора крови донора и реципиента по антигенам эритроцитов системы AB0 и антигенам системы Резус, что обеспечивает безопасность 95-98 % гемотрансфузий.

Определение группы крови перекрестным методом

Моноклональные антитела- «цоликлоны*»- типирующие реагенты нового поколения для определения антигенов эритроцитов человека. Наиболее часто используются цоликлоны анти-А (красная жидкость), анти-В (синяя жидкость) и анти-D (прозрачная жидкость). Первые два цоликлона предназначены для определения группы крови по системе ABO, последний — для определения группы крови по системе резус.

^{*} Название препаратов происходит от названия института, где изобрели и изготовили эти растворы — Центральный Ордена Ленина Институт Клинической Онкологии

Цоликлоны диагностические жидкие — моноклональные реагенты для типирования крови человека по антигенам эритроцитов. Исследование проводят посредством смешивания реагента с анализируемыми эритроцитами. Принцип теста основан на реакции гемагглютинации. Наступает в результате специфического взаимодействия антигенов эритроцитов с соответствующими реагентами. Положительный результат характеризуется образованием агглютинатов и просветлением поля реакции. В случае отсутствия антигена агглютинация не наблюдается.

определение групп крови с помощью цоликлонов

Группа крови	ЦОЛИКЛОНЫ				Стандартные Эритроциты+сывор тка		
	Анти - А1	Анти-А	Анти-В	Анти- АВ	O(I)	A(II)	B(III)
0		-	-	-	-	+	+
В		-	+	+	-	+	-
Α	+	+	-	+	-	-	+
A2	-	+	-	+	-	-	+
AB	+	+	+	+	-	-	-
A2B	-	+	+	+	-	-	-

Фенотип и генотип

- Международное общество переливания крови установило определенные правила для обозначения фенотипов антигенов.
- Понятие фенотипа обозначает **антигены**, присутствующие или отсутствующие на эритроцитах индивида, что определяется по взаимодействию исследуемых эритроцитов с сыворотками.
- <u>Эритроциты можно фенотипировать</u>, но нельзя <u>генотипировать</u>. До тех пор пока не выполнено семейное исследование, генотип всегда интерпретируется из фенотипа.

ТРАНСФУЗИОННЫЕ ОСЛОЖНЕНИЯ

осложнение	проявления
Причина: несовместимость- антитела к лейкоцитам в плазме	Недостаточность функции легких возникает в течении 1-4 часов после начала трансфузии. На рентгеновском снимке диффузное затемнение легких.
Посттрансфузионная пурпура (при переливании тромбоцитов, чаще у женщин)	Через 5-10 дней после трансфузии. Тромбоцитопения.Повышенная тенденция к кровоточивости.
Гемолитические при переливании эритромассы, свежезамороженной плазмы. Причина: несовместимость по ABO, резус, Кидд, Келл, Даффи	Немедленные - возникают во время или спустя несколько часов после трансфузии. Отстроченные - возникают через 5-10 дней после трансфузии (температура, анемия, желтуха. Увеличение содержания билирубина).

Развитие техники бескровных хирургических операций, бережное и настороженное отношение к клиническому использованию компонентов крови, опора на лабораторные показатели крови при назначении компонентов крови становятся характерной чертой современного подхода к переливанию крови (её компонентов).

Таблица наследования групп крови, в % указана вероятность генотипа потомства

Группа крови матери ↓	Группа крови отца →						
	I(00)	II(A0)	II(AA)	III(B0)	III(BB)	IV(AB)	
I(00)	I(00) — 100 %	I(00) — 50 % II(A0) — 50 %	II(A0) — 100 %	I(00) — 50 % III(B0) — 50 %	III(B0) — 100 %	II(A0) — 50 % III(B0) — 50 %	
II(A0)	I(00) — 50 % II(A0) — 50 %	I(00) — 25 % II(A0) — 50 % II(AA) — 25 %	II(AA) — 50 % II(A0) — 50 %	I(00) — 25 % II(A0) — 25 % III(B0) — 25 % IV(AB) — 25 %	IV(AB) — 50 % III(B0) — 50 %	II(AA) — 25 % II(A0) — 25 % III(B0) — 25 % IV(AB) — 25 %	
II(AA)	II(A0) — 100 %	II(AA) — 50 % II(A0) — 50 %	II(AA) — 100 %	IV(AB) — 50 % II(A0) — 50 %	IV(AB) — 100 %	II(AA) — 50 % IV(AB) — 50 %	
III(B0)	I(00) — 50 % III(B0) — 50 %	I(00) — 25 % II(A0) — 25 % III(B0) — 25 % IV(AB) — 25 %	IV(AB) — 50 % II(A0) — 50 %	I(00) — 25 % III(B0) — 50 % III(BB) — 25 %	III(BB) — 50 % III(B0) — 50 %	II(A0) — 25 % III(B0) — 25 % III(BB) — 25 % IV(AB) — 25 %	
III(BB)	III(B0) — 100 %	IV(AB) — 50 % III(B0) — 50 %	IV(AB) — 100 %	III(BB) — 50 % III(B0) — 50 %	III(BB) — 100 %	IV(AB) — 50 % III(BB) — 50 %	
IV(AB)	II(A0) — 50 % III(B0) — 50 %	II(AA) — 25 % II(A0) — 25 % III(B0) — 25 % IV(AB) — 25 %	Charles and the Charles	II(A0) — 25 % III(B0) — 25 % III(BB) — 25 % IV(AB) — 25 %	IV(AB) — 50 % III(BB) — 50 %	II(AA) — 25 % III(BB) — 25 % IV(AB) — 50 %	

- Существование нескольких групп крови:
- 1) повышение устойчивости популяции к различным заболеваниям;
- 2) регуляция взаимодействия с симбиотическими организмами, населяющими наше тело.
- Так, антигены AB0 чаще всего встречаются в частях тела, занятых симбиотическими микроорганизмами, либо на «входных воротах» инфекций. Местонахождение этих антигенов не только эритроциты, и эволюционировали они сначала в других тканях организма слюнных железах, желудочно-кишечном тракте (и там их намного больше, чем в крови). Однако точные механизмы этого феномена еще не ясны.
- В случае вируса это является средством молекулярной мимикрии: вирус имитирует клетку крови человека и таким образом не уничтожается клетками инфицированного организма, например вирус ВИЧ размещает на своей оболочке многие антигены лимфоцита, из которого он вышел. Если же вирус попадает в кровь человека с другой группой крови, он будет атакован антителами нового хозяина к чужеродным антигенам. Поэтому получается, что заразиться ВИЧ от несовместимого по группе крови человека менее вероятно, чем от человека с тождественной.

- Черная оспа в Европе до изобретения вакцин убивала в первую очередь людей со второй группой крови, что повысило количество людей с первой и третьей группами.
- А чума в Средневековье убивала в первую очередь людей с первой группой крови.
- Теперь, зная это, можно легко сказать, зачем организм отторгает кровь несовместимой группы. Переливание такой крови для организма равноценно инфекции такого «замаскированного» микроорганизма, и, пытаясь этот микроорганизм истребить, иммунитет запускает посттрансфузионную реакцию.
- Такой же механизм селекции групп крови можно проследить и на примере, относящемся к бактерии Helicobacter pylori. Эта бактерия в первую очередь вызывает такие очень распространенные желудочные болезни, как гастрит и язва. Хеликобактер лучше связывается с Н-антигеном (антигеном 0 (I) группы крови), чем с антигенами А и В, в связи с чем люди с первой группой крови более подвержены гастродуоденальным заболеваниям, чем все остальные.