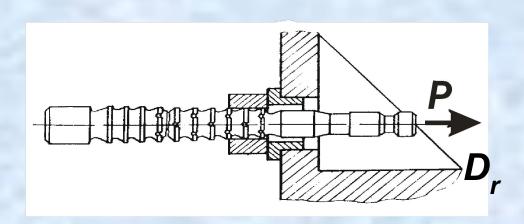
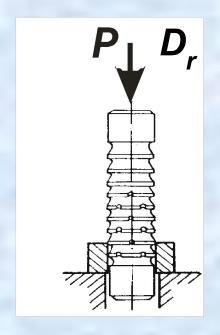

### ОБРАБОТКА ЗАГОТОВОК ПРОТЯГИВАНИЕМ

- 8.1. Основные понятия и определения. Технологические возможности протягивания.
- 8.2. Основные типы протяжных станков и инструмент для протягивания.
- 8.3. Элементы режима резания при протягивании.
- 8.4. Порядок расчета рациональных ПРР при протягивании. Пути повышения производительности труда при протягивании.


## ПРОТЯГИВАНИЕ




**D**<sub>r</sub> – главное движение – поступательное перемещение инструмента

#### СХЕМЫ РАБОТЫ ПРОТЯЖКИ И ПРОШИВКИ

**D**<sub>r</sub> – главное движение – поступательное перемещение инструмента





#### протягивание

прошивание

- Прошивка отличается от протяжки отсутствием замковой части,
- шейки и задней части.

## ОСНОВНЫЕ ПОНЯТИЯ И ТЕХНОЛОГИЧЕСКИЕ ВОЗМОЖНОСТИ ПРОТЯГИВАНИЯ

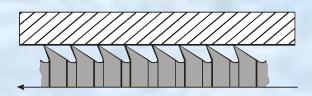
Протический способ обработки заготовок с помощью многолезвийных инструментов:протяжек и прошивок.

#### Основные преимущества:

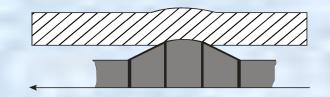
- 1. Высокая производительность;
- 2. Достигается высокая точность (IT6);
- 3. Малая шероховатость( $R_a = 0,16 \text{ мкм}$ );
- 4. Возможность упрочнения обработанной поверхности;
- 5. Использование неквалифицированного труда;

#### Недостатки:

- 1. Сложность изготовления инструмента;
- 2. Высокая стоимость инструмента;
- 3. Горизонтальная протяженность (станки занимают большую площадь).


#### Высокая производительность способа обеспечивается:

- •Большой длиной режущих кромок участвующих в обработке;
- •Совмещением резания, выглаживания и деформирования;
- •Отсутствием холостых ходов.


#### ВИДЫ ПРОТЯГИВАНИЯ

#### Виды протягивания и получение характеристики точности и шероховатости:

| Вид обработки | Конструкция инструмента                                                      | R <sub>a</sub> <sup>min</sup> | ΙΤ |
|---------------|------------------------------------------------------------------------------|-------------------------------|----|
| Получистовое  | С режущими зубьями                                                           | 1,25                          | 8  |
| Чистовое      | С режущими и стальными выглаживающими элементами                             | 0,63                          | 7  |
| Отделочное    | С режущ. зубьями, твердосплавными выглаживающими и деформирующими элементами | 0,16                          | 6  |







Примечание - калибровку делают после термообработки протянутых ранее отверстий.

# ОСНОВНЫЕ ТИПЫ ДЕТАЛЕЙ ОБРАБАТЫВАЕМЫХ ПРОТЯГИВАНИЕМ

**Единичное и массовое** производство

Внутреннее протягивани **С** 

Сложные фасонные внутренние отверстия большой длинны

Крупносерийное и массовое производство

Внутреннее протягивани

- 1. Зубчатые колеса и звездочки;
- 2. Втулки, муфты, цилиндры, гильзы;
- 3. Отверстия в рычагах и корпусных деталях.

протягивани

Наружное

- Плоские поверхности;
- 2. Уступы,пазы;
- 3. Выпуклые и вогнутые поверхности;
- 4. Зубчатые поверхности (рейки).

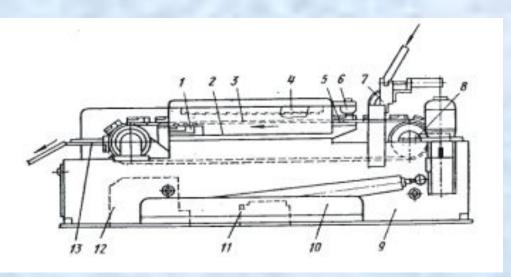
#### типы протяжных станков

Циклического действия

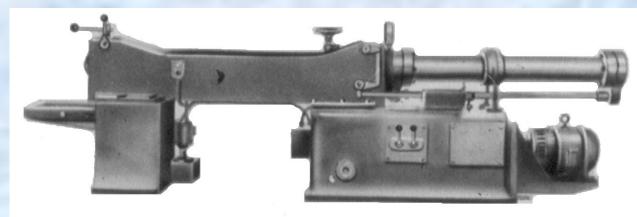
Непрерывного действия (для наружного протягивания)

Для внутреннего протягивания

Для наружного протягивания


С перемещением инструмента

С перемещением заготовки


- -Горизонтальные;
- -Вертикальные.

-Горизонтальные.

### ПРОТЯЖНЫЕ СТАНКИ



Протяжной станок непрерывного действия



горизонтально-протяжной станок / этом

### КЛАССИФИКАЦИЯ ПРОТЯЖЕК

По виду обрабатываемой поверхности По форме обрабатываемо й поверхности

По виду рабочей части

По конструкции инструмента

-Внутренние;

-Наружные.

-Круглые;

-Шлицевые;

-Шпоночные;

-Многогранные;

-Плоские;

-Фигурные.

-C режущими элементами;

-С выглаживающими

элементами;

-С деформирующими


элементами;

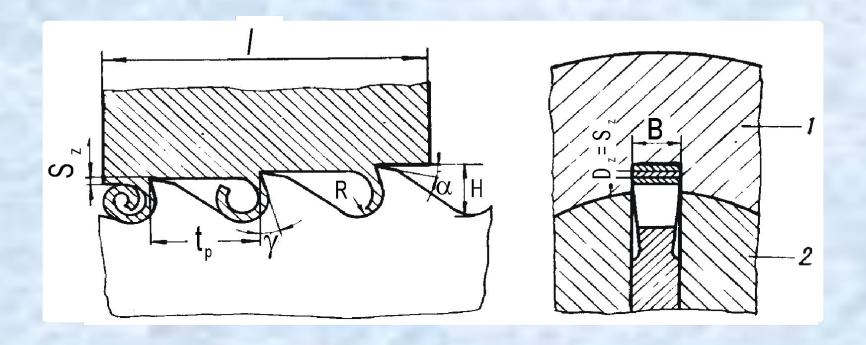
-Комбинированные.

-Целые;

-Сборные.

#### ЧАСТИ И ГЕОМЕТРИЯ ПРОТЯЖКИ




Задняя поверхност ь Передняя поверхност ь

- 1. хвостовик
- 2. шейка
- 3. переходный конус
- 4. передняя направляющая часть
- 5. режущая часть
- 6. калибрующая часть
- 7. задняя направляющая часть
- 8. опорную цапфу

задний угол,  $\alpha$  передний угол ,  $\gamma$  шаг зубьев t

Протяжки для протягивания глубоких отверстий имеют обычно спиральные зубья.

#### ЭЛЕМЕНТЫ РЕЗАНИЯ ПРИ ПРОТЯГИВАНИИ



- 1. Скорость резания V=0,5...30 м/мин;
- 2. Подача на один зуб Sz-разность по высоте двух соседних зубьев;

#### ЭЛЕМЕНТЫ РЕЗАНИЯ ПРИ ПРОТЯГИВАНИИ

4. 
$$T_0 = L*k/1000*V*q$$
,где

 $L=l_1+l_x+l_3$ -длинна хода протяжки,мм; V-скорость резания,м/мин; q-количество одновременно обработанных заготовок;  $k=1+V_p/V_0$   $V_p$ -скорость рабочего хода;  $V_0$ -скорость холостого хода;

5.  $P_z = P_{yx} * \Sigma l_p * K_p$ , H, где

 $P_{yд}$ -сила приложенная на ед.  $1_p$ ;  $1_p$ -длинна режущей кромки зуба;

6.  $N_{9} = P_z * V_g, H;$ 

7.  $P_z = C_p * S_z^{xp} * b * Z_p * K_{OTII}, H;$ 

**b**-ширина среза;

Z<sub>p</sub>-число одновременно работающих зубьев;

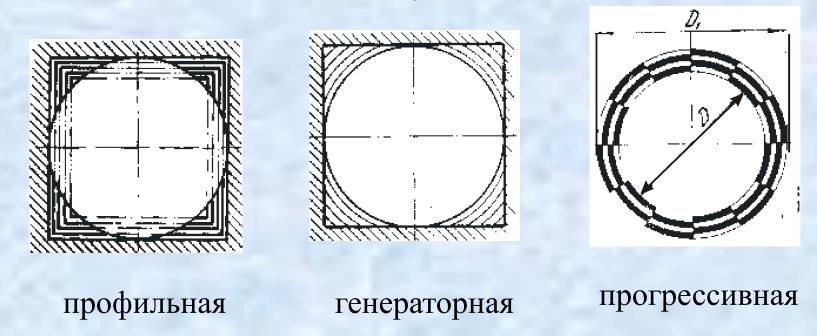
8. 
$$V_g = (C_v/T^{**}S_z)^*k^{\text{общ}}, \text{м/мин}$$

#### КЛАССИФИКАЦИЯ СХЕМ РЕЗАНИЯ

# По способу формирования обрабатываемой поверхности

- Профильная;
- Генераторная.

# По способу разделения снимаемого припуска


- Одинарная;
- Групповая (прогрессивная);
- Трапецеидальная.

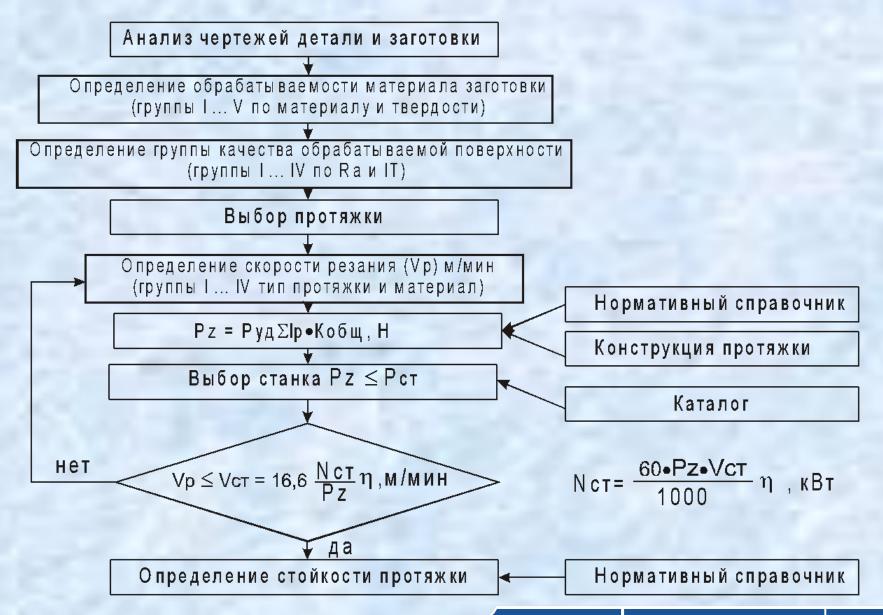
Одинарная схема-предполагает, что припуск снимается режущей кромкой каждого зуба по всему периметру.

#### СХЕМЫ ПРОТЯГИВАНИЯ

На работу протяжек оказывает большое влияние выбранная схема срезания припуска.

Наиболее часто применяемые схемы.




**Профильная схема** срезания обеспечивается зубьями подобными срезаемому профилю.

<u>Генераторная схема</u> обеспечивается зубьями имеющими профиль постепенно генерирующими необходимый профиль.

Прогрессивная (групповая) схема обеспечивается зубьями объединенными в группы по 2-3 и более зубьев.

О главление С одержание раздела Выход

# ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА РАЦИОНАЛЬНОГО РЕЖИМА РЕЗАНИЯ ПРИ ПРОТЯГИВАНИИ



# ПУТИ ПОВЫШЕНИЯ ПРОИЗВОДИТЕЛЬНОСТИ ПРОТЯГИВАНИЯ.

- 1. Концентрация обработки (одновременная обработка нескольких поверхностей блочными протяжками);
- 2. Сокращение суммарной длинны протяжки;
- 3. Увеличения скорости резания;
- 4. Одновременная обработка нескольких деталей;
- 5. Использование специальных загрузочных бункеров и роботов.