Лекция 4

Закон Гесса.

Зависимость энтальпий химических реакций от температуры. Уравнение Кирхгофа.

Второй закон термодинамики. Энтропия. Аксиоматика первого и второго законов термодинамики.

Лекция 3.

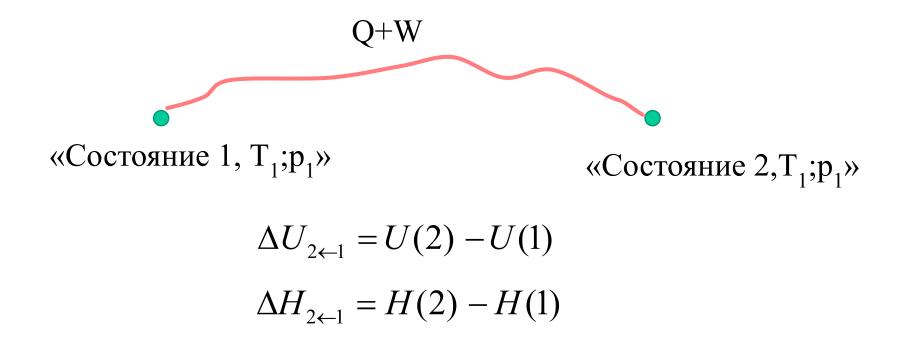
Теплота, работа и изменение внутренней энергии для различных процессов в идеальном газе

Энтальпия. Вычисление изменений внутренней энергии и энтальпии из опытных данных.

Теплоты реакций Q_{V} и Q_{p} . Стандартные энтальпии химических реакций.

Первый закон термодинамики утверждает, что внутренняя энергия постоянна

- 1. В любой системе. 2. В закрытой системе 3. В открытой системе
- 4. В изолированной системе 5. Систем с постоянной энергией не существует.


Может быть несколько правильных ответов. Указать все!

Выражение $\delta Q + \delta W = dU$

- 1) Это первый закон термодинамики для изолированных систем
- 2) В закрытой системе сумма $\delta Q + \delta W$ совпадает с полным дифференциалом.
- 3) Интеграл $\int \delta Q$ всегда больше нуля
- 4) Интеграл $\int dU$ по любому замкнутому контуру равен нулю

Может быть несколько правильных ответов. Указать все!

ПЕРВЫЙ ЗАКОН и ХИМИЧЕСКАЯ РЕАКЦИЯ

«Состояние 1» - реагенты реакции;

«Состояние 2» - продукты реакции.

ЭНТАЛЬПИЯ.

У любой системы существует функция состояния, называемая

энтальпией, Н.

$$H = U + pV;$$

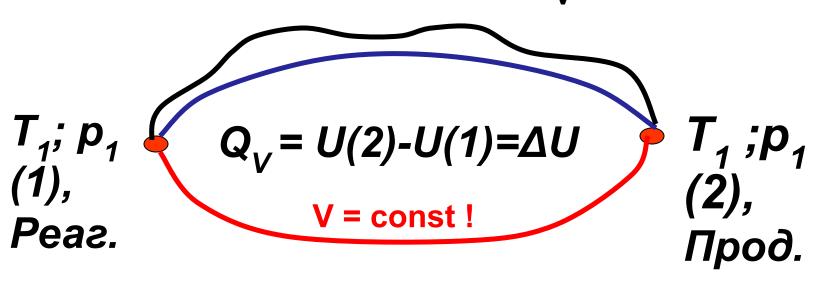
$$dH = dU + pdV + Vdp$$

$$\Delta H_{2\leftarrow 1} = \Delta U_{2\leftarrow 1} + \Delta (pV)_{2\leftarrow 1}$$

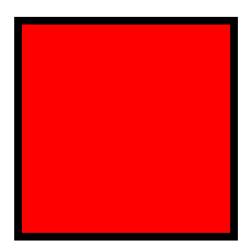
$$\Delta H_{2\leftarrow 1} = Q - \int_{1}^{2} p_{\text{\tiny GHeU}} dV + p_2 V_2 - p_1 V_1$$

ТЕПЛОВЫЕ ЭФФЕКТЫ Q_V и Q_p

$$\Delta U_{2\leftarrow 1} = Q + W = Q - \int_{1}^{2} p_{\text{внеш}} dV = Q_{V}$$

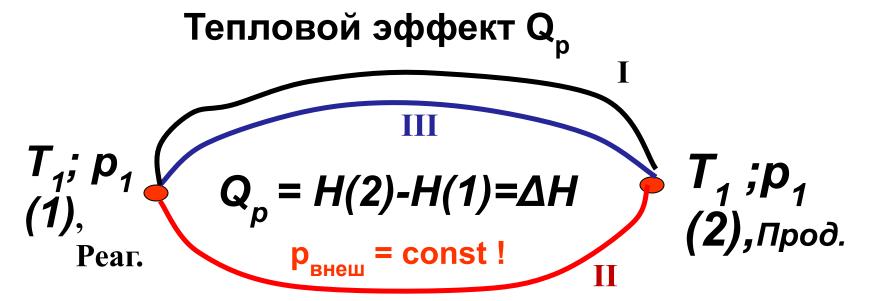

$$V = const$$
 $\Delta U_{2 \leftarrow 1} = Q_V$

$$\Delta H_{2\leftarrow 1} = Q - \int_{1}^{2} p_{\text{внеш}} dV + p_{2}V_{2} - p_{1}V_{1} =$$

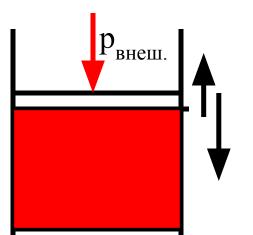

$$Q - p_{\text{внеш}} (V_2 - V_1) + p_2 V_2 - p_1 V_1 = Q_p$$

$$p_{\text{внеш}} = p_2 = p_1 = const; \quad \Delta H_{2\leftarrow 1} = Q_p$$

Тепловой эффект Q_v



$$Q_V = U(II)$$


$$\Delta U(I) = \Delta U(II) = \Delta U(III)$$

$$Q_V(II) \neq Q(I) \neq Q(III)$$

$$Q_p = \Delta H(II)$$

$$p_1 = p_1 = p_{\text{внеш}}$$

$$\Delta H(I) = \Delta H(II) = \Delta H(III)$$

$$Q_{p}(II) \neq Q(I) \neq Q(III)$$

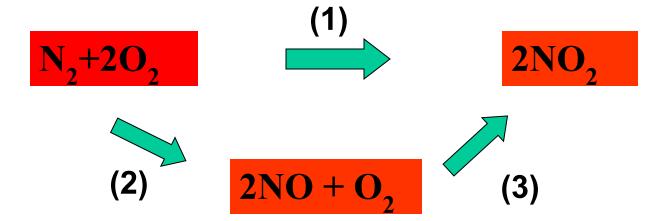
Обычный «путь» в калориметрии

$$Q_V \Rightarrow \Delta U \Rightarrow \Delta H \Rightarrow \Delta H_T^0$$

Связь ΔH и ΔU химической реакции.

$$\Delta H = \Delta U + \Delta (pV) = \Delta U + (pV)_{\Pi pool.} - (pV)_{Peac.}$$

Для идеальных газов: pV = nRT


Для твердых и жидких: $pV \approx 0$

$$\Delta H = \Delta U + \Delta (pV) \approx \Delta U + \Delta n \times RT$$

 $\Delta n = n$ (продукты, газы) - n (реагенты газы)

Энтальпии реакций. Закон Гесса.

Закон Гесса

Что такое закон Гесса?

3 балла

- 1. Энтальпия химической реакции не зависит от способа её проведения.
- 2. Теплота химической реакции не зависит от способа её проведения.
- 3. Тепловые эффекты химической реакции, $Q_{\rm v}$ и $Q_{\rm p}$, не зависят от способа ее проведения.

Энтальпии реакций, $\Delta \! H_{r,298K}^0$

Реакция	$\Delta H^0_{r,298K}, \ \kappa$ Джс моль $^{-1}$
3K(тв) + AI(тв) + 3F ₂ = K ₃ AIF ₆ (тв) образования	-3347.0
$CH_4 + 2O_2 = CO_2 + 2 H_2O (ж)$ сгорания	-890
FeF ₃ =FeF ₂ +F <i>разрыва связи</i>	367

ЭНТАЛЬПИИ ОБРАЗОВАНИЯ

Это энтальпии образования химических соединений из простых веществ:

$$3O_{me,spa\phium} + 4EH + OH _2 \xrightarrow{\Delta H_{f,T}^0} _3 _7 \longrightarrow _{3cud}$$

Простые вещества (элементы в своем естественном состоянии!):

$$H_2; F_2; C_2;$$
 $_{me.rpapum};$ $_{me}$ электрон e

ЭНТАЛЬПИИ ОБРАЗОВАНИЯ

Энтальпии образования простых веществ равны нулю:

$$O_2(\varepsilon a3) \rightarrow O_2(\varepsilon a3), \quad \Delta H_{f,T}^0 \{O_2(\varepsilon a3)\} = 0$$

Энтальпия любой реакции равна разности энтальпий образования продуктов и реагентов

$$\begin{split} 2CH_{3} &\to C_{2}H_{6}; \quad \Delta H_{T}^{0} = \Delta H_{f,T}^{0} \left\{ C_{2}H_{6} \right\} - 2\Delta H_{f,T}^{0} \left\{ CH_{3} \right\} \\ &C_{m_{6}.epa\phi.} + \frac{3}{2}H_{2} \to CH_{3} \quad \Delta H_{f,T}^{0} \left\{ CH_{3} \right\} \\ &2C_{m_{6}.epa\phi.} + 3H_{2} \to C_{2}H_{6} \quad \Delta H_{f,T}^{0} \left\{ C_{2}H_{6} \right\} \end{split}$$

Энтальпии образования, $\Delta \! H_{f,298K}^0$

Вещество	$\Delta k \mathcal{I}_{3268} Monb$ -1
H ₂ O (ж)	-286.0
С ₆ Н ₆ (ж)	49.0
С ₆₀ (тв)	2334

Какой реакции соответствует энтальпия $\Delta H^0_{f,298K}(AlOF_2^-, газ)$

балл

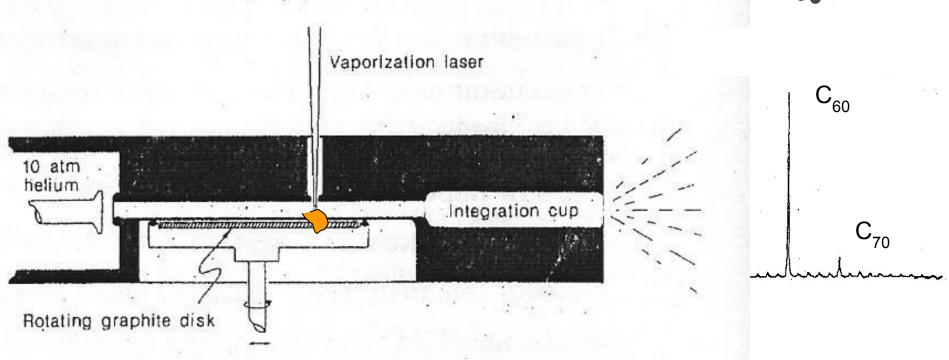
1)
$$2d_{(me)} + F_2 + O + e \rightarrow AlOF_2^-$$
 (

2)
$$Ad_{(me)} + 2F + O + e \rightarrow AlOF_2^-($$

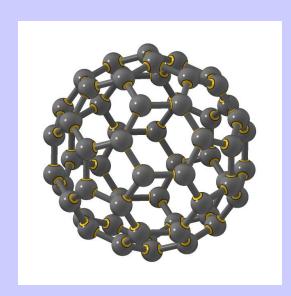
3)
$$\text{DIF}_{(2a3)} \text{ AuF}_2 + O + e \rightarrow Al \quad _2^-($$

4)
$$DF_{(2a3)} = \frac{1}{2}O_2 + e \rightarrow Al = \frac{1}{2}($$

5)
$$DIF_{(me)}$$
 $\partial aB_2 + \frac{1}{2}O_2 + e \rightarrow Al \frac{1}{2}($



NATURE VOL. 318 14 NOVEMBER 1985


C₆₀: Buckminsterfullerene

H. W. Kroto*, J. R. Heath, S. C. O'Brien, R. F. Curl & R. E. Smalley



Фуллерен (1985)

C₆₀

- ✓ Молекула, d = 0.7 нм. Сфера, полая внутри
- ✓ Образует обычный кристалл
- ✓ Наноматериал в растворах

Кристалл C_{60}

ЭНТАЛЬПИЯ ОБРАЗОВАНИЯ C_{60}

Точность квантовомеханического расчета: Изодесмическая реакция

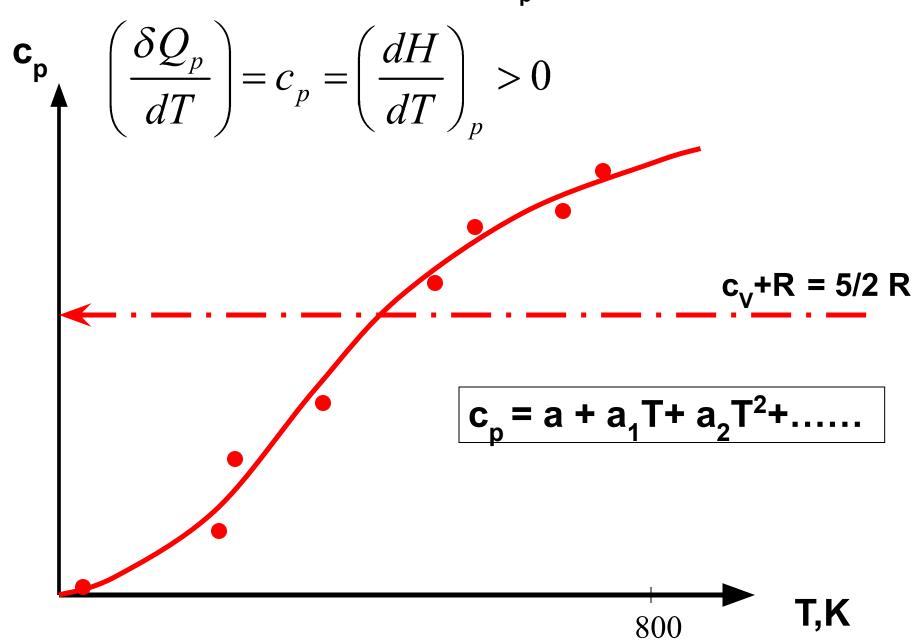
$$CH_3 - CH_2 - OH + CH_4 =$$
 $CH_3 - CH_3 + CH_3 - OH$

9 связей *С - Н*, 1 связь *С-О, О-Н, С-С*

Точность эксперимента: 0.5-1 % от величины **\Delta** H

Точность расчета: 1-3 % от величины **Δ** Н

ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ЭНТАЛЬПИЙ ХИМИЧЕСКИХ РЕАКЦИЙ


ЧТО ТАКОЕ ТЕПЛОЕМКОСТЬ c_p ?

$$H = U + pV$$
; $dH = dU + pdV + Vdp$

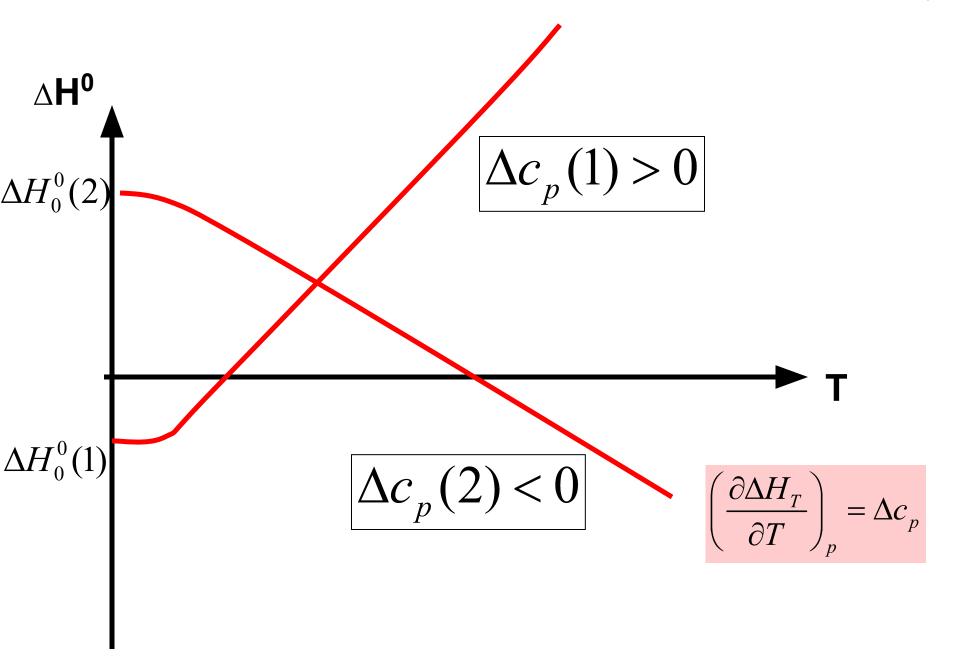
$$\delta \mathbf{Q} = dU + pdV; \quad p = const; \quad \delta Q_p = d$$

$$c_p = \left(\frac{\delta Q_p}{dT}\right) = \left(\frac{\partial H}{\partial T}\right)_p$$

Теплоемкость, с_р

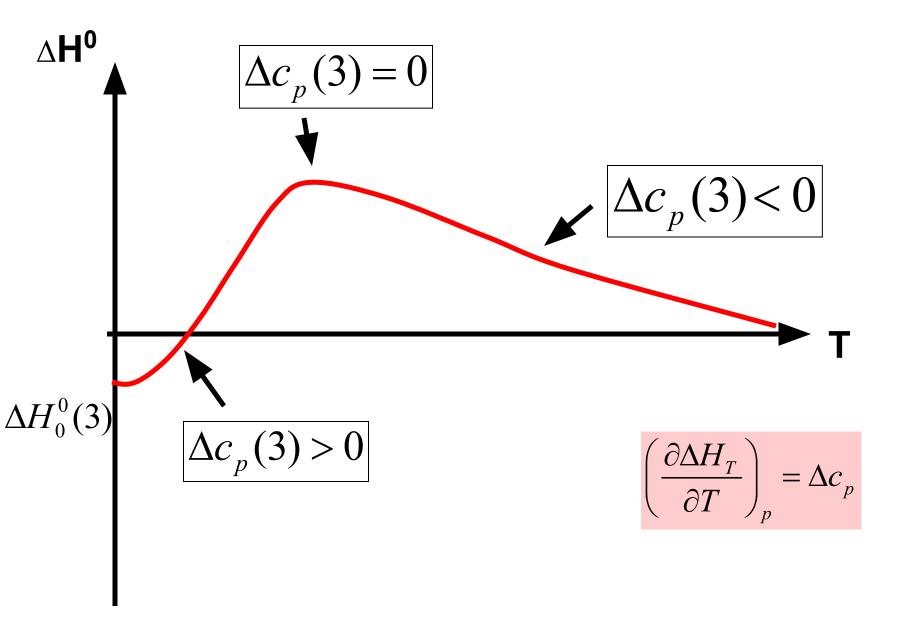
Температурная зависимость энтальпий реакций (1) и (2) Закон Кирхгофа.

$$A+B \Rightarrow C+D$$


$$\Delta H_{p-uuu} = H_C + H_D - H_A - H_B;$$

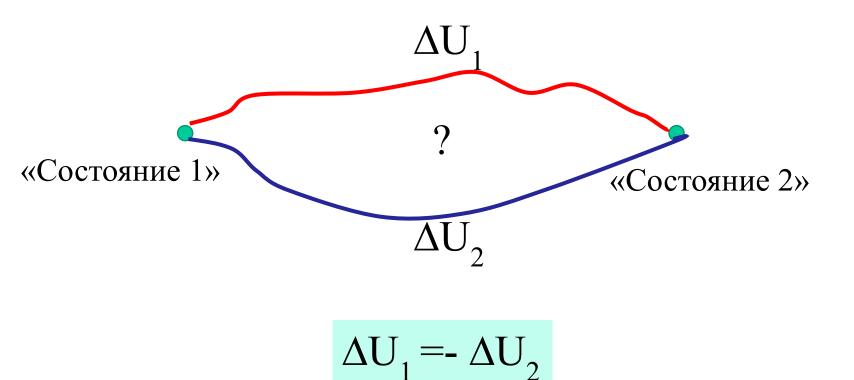
$$\left(\frac{\partial \Delta H_{p-uuu}}{\partial T}\right)_{p} = \left(\frac{\partial (H_{C} + H_{D} - H_{A} - H_{B})}{\partial T}\right)_{p} = \Delta c_{p}$$

$$\Delta c_p = c_p(C) + c_p(D) - c_p(A) - c_p(B)$$

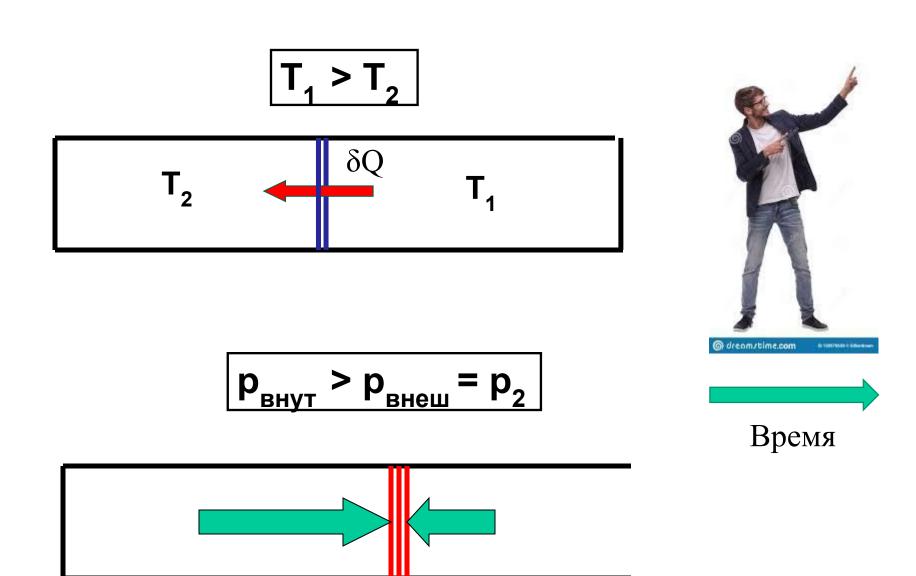

$$\Delta c_p = f(T, p)$$

Температурная зависимость энтальпий реакций (1) фи (2) ф

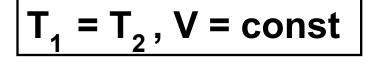
Температурная зависимость энтальпий реакций (3)

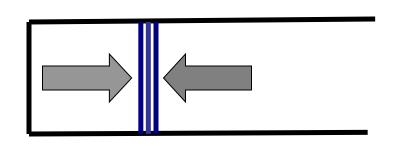


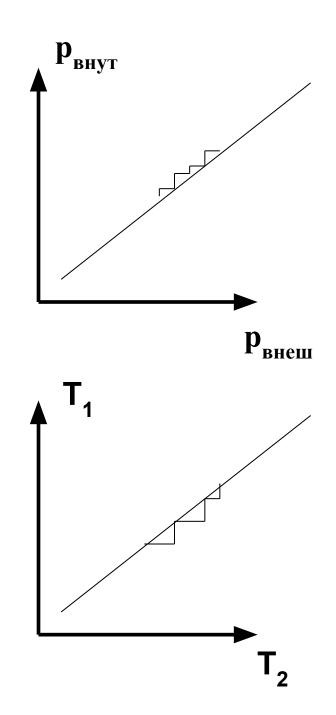
- 1) Соответствует реакции, протекающей при постоянной температуре Т;
- 2) Растет с увеличением температуры Т;
- 3) Если реакция проходит при постоянном внешнем давлении равна теплоте реакции;
- 4) Только при постоянном внешнем давлении не зависит от способа проведения реакции.
- 5) Равна $\Delta U + \Delta nRT$, где Δn разница числа молей продуктов и реагентов.

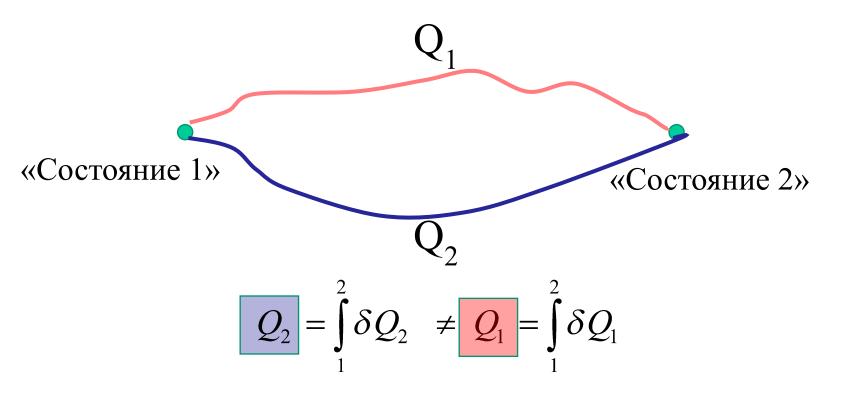

Какие из этих утверждений – правильные ?

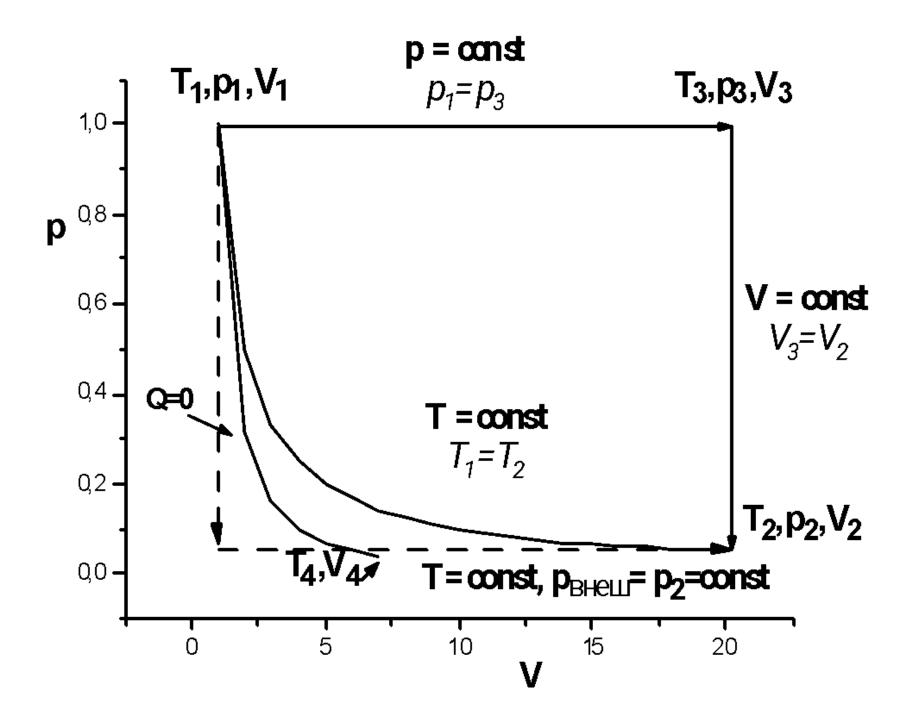
ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ

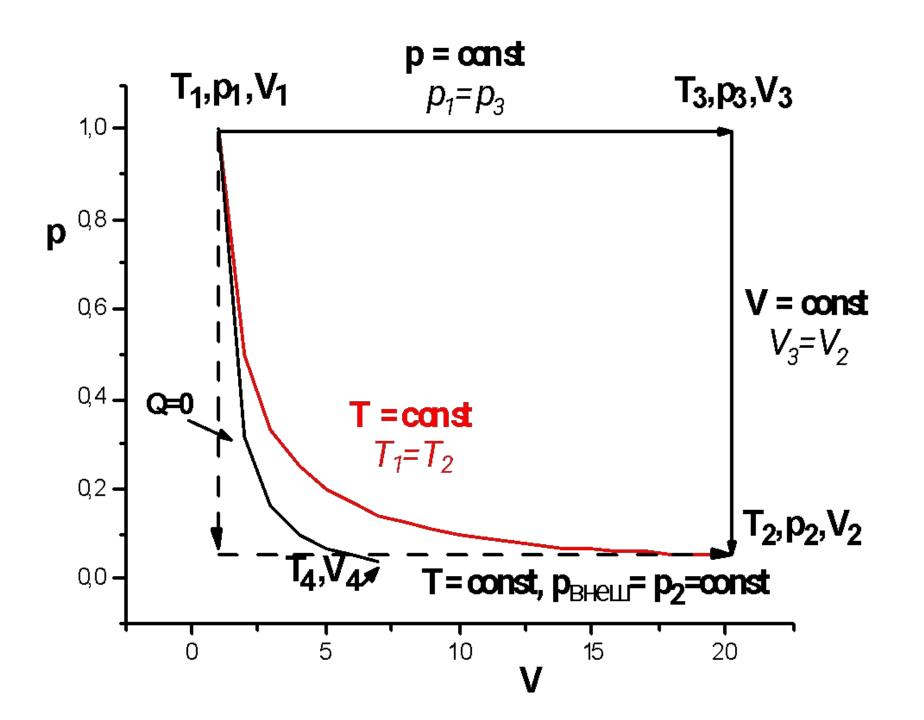

ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ




Самопроизвольные процессы


Квазистатические процессы

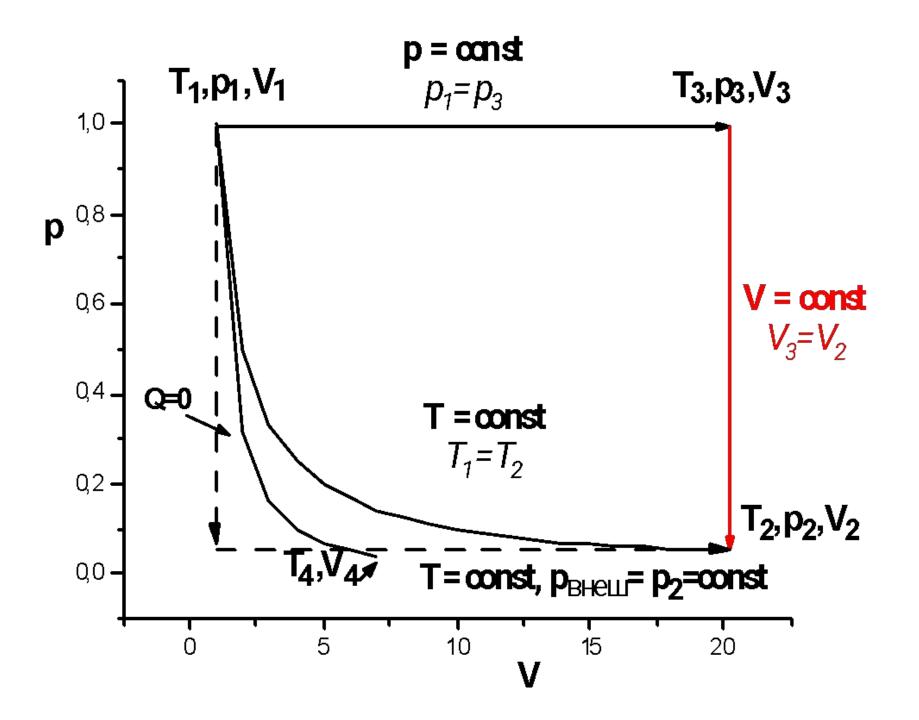




ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ

$$S \Rightarrow \delta S = \frac{\delta Q}{T} ?? \quad \Delta S_{2\leftarrow 1} = \int_{1}^{2} \frac{\delta Q_{1}}{T} = \int_{1}^{2} \frac{\delta Q_{2}}{T} ???$$

ИДЕАЛЬНЫЙ ГАЗ


КВАЗИСТАТИЧЕСКИЙ, ИЗОТЕРМИЧЕСКИЙ ПРОЦЕСС.

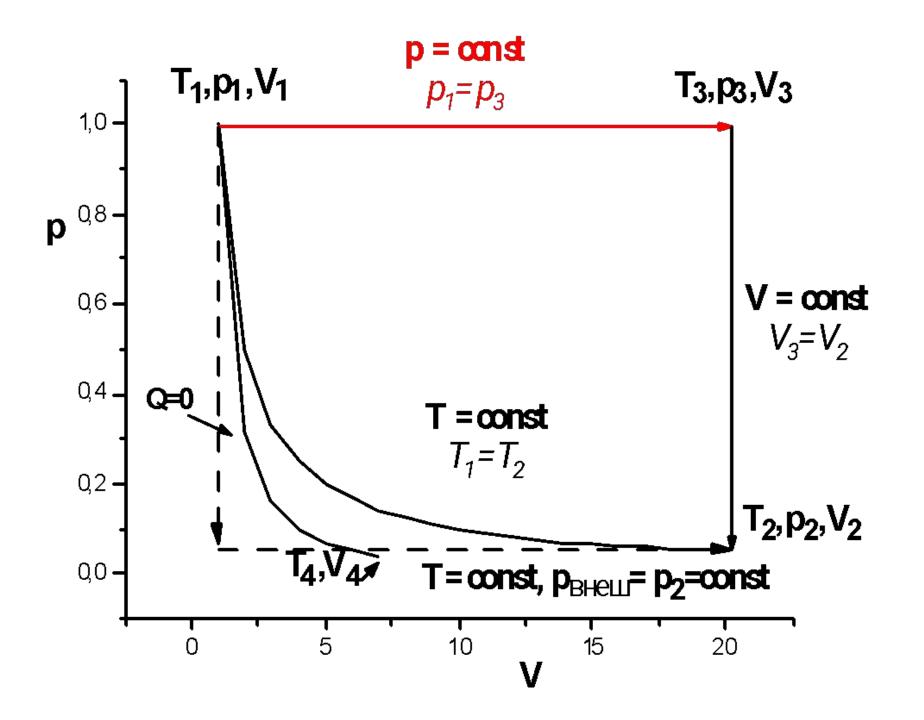
$$\Delta U = 0$$
; $dU = \delta Q + \delta W$; $\delta W = -\delta Q$ $\delta W = -pdV$

$$W = \int_{V_1}^{V_2} -\frac{RT}{V} dV = -RT \ln \frac{V_2}{V_1}$$

$$W = -RT \ln \frac{V_2}{V_1}; \quad Q = RT \ln \frac{V_2}{V_1}; \quad \Delta S = R \ln \frac{V_2}{V_1}$$

Процесс	$Q(2 \leftarrow 1)$	$\int_{1}^{2} \frac{\delta Q}{T} = \Delta S(2 \leftarrow 1)$
T=const A \(\B\)	$RT \ln \frac{V_2}{V_1}$	$R \ln \frac{V_2}{V_1}$
		•

ИДЕАЛЬНЫЙ ГАЗ


КВАЗИСТАТИЧЕСКИЙ, ИЗОХОРИЧЕСКИЙ ПРОЦЕСС.

$$dU = \delta Q + \delta W$$
; $\delta Q = c_V dT$

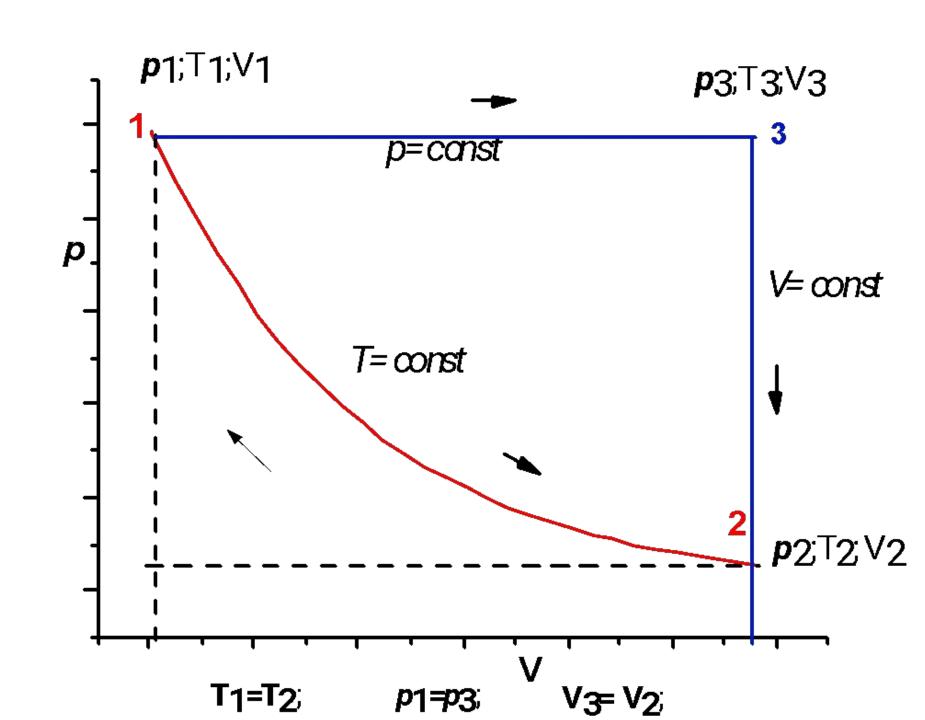
$$Q = \int_{T_3}^{T_2} c_V dT = c_V (T_2 - T_3)$$

$$\Delta S = \int_{T_3}^{T_2} \frac{\delta Q}{T} = \int_{T_3}^{T_2} \frac{c_v}{T} dT = c_v \int_{T_3}^{T_2} \frac{dT}{T} dT = c_v \ln \frac{T_2}{T_3};$$

Процесс	$Q(2 \leftarrow 1)$	$\int_{1}^{2} \frac{\delta Q}{T} = \Delta S(2 \leftarrow 1)$
V=const	$c_V(T_2-T_3)$	$c_v \ln \frac{T_2}{T_3}$
3 🗆 2	$C_V(I_2 I_3)$	T_3

ИДЕАЛЬНЫЙ ГАЗ

КВАЗИСТАТИЧЕСКИЙ, ИЗОБАРИЧЕСКИЙ ПРОЦЕСС.


$$dU = \delta Q + \delta W$$
; $\delta Q = c_p dT$

$$Q = \int_{T_1}^{T_3} c_p dT = c_p (T_3 - T_1)$$

$$\Delta S = \int_{T_1}^{T_3} \frac{\delta Q}{T} = \int_{T_1}^{T_3} \frac{c_p}{T} dT = c_p \int_{T_1}^{T_3} \frac{dT}{T} dT = c_p \ln \frac{T_3}{T_1};$$

Процесс	$Q(2 \leftarrow 1)$	$\int_{1}^{2} \frac{\delta Q}{T} = \Delta S(2 \leftarrow 1)$
p=const 1 \(\Brace 3	$c_p(T_3-T_1)$	$c_p \ln \frac{T_3}{T_1}$

	$\int_{1}^{2} \frac{\delta Q}{T} = \Delta S$
$RT \ln \frac{V_2}{V_1}$	$R \ln \frac{V_2}{V_1}$
$c_p\left(T_3-T_1\right)$	$c_p \ln \frac{T_3}{T_1} = (c_V + R) \ln \frac{T_3}{T_1}$
$c_V(T_2-T_3)$	$c_V \ln \frac{T_2}{T_3}$
$R(T_3-T_1)$	$R\ln\frac{T_3}{T_1} = R\ln\frac{V_2}{V_1}$
	$\frac{V_1}{c_p \left(T_3 - T_1\right)}$ $\frac{c_V \left(T_2 - T_3\right)}{c_V \left(T_2 - T_3\right)}$

