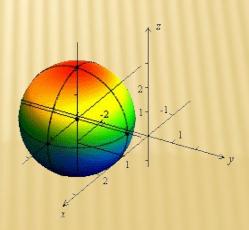

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ


Поверхности

СФЕРА

- геометрическое место точек пространства, равноудаленных от фиксированной точки (центра (x_0, y_0, z_0)) на расстояние R радиус. $(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=R^2$

Сечения сферы

ГИПЕРБОЛОИДЫ

Однополостным гиперболоидом - поверхность, каноническое уравнение которой имеет вид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1,$$

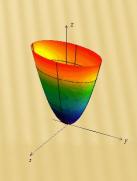
а, b, с положительные числа.

Имеет три плоскости симметрии, три оси симметрии и центр симметрии. Ими являются соответственно координатные плоскости, координатные оси и начало координат.

ГИПЕРБОЛОИДЫ

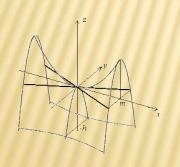
Двуполостным гиперболоидом - поверхность, каноническое уравнение которой имеет вид $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, *a, b, с* положительные числа. Имеет три плоскости симметрии. три оси

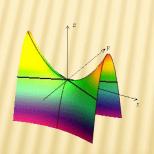
Имеет три плоскости симметрии, три оси симметрии и центр симметрии. Ими являются соответственно координатные плоскости, координатные оси и начало координат.

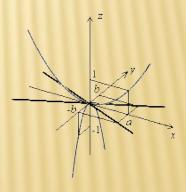

Параболоиды

Эллиптическим параболоидом поверхность, уравнение которой в некоторой декартовой системе координат

ИМЕЕТ ВИД $z = \frac{x^2}{a^2} + \frac{y^2}{b^2},$

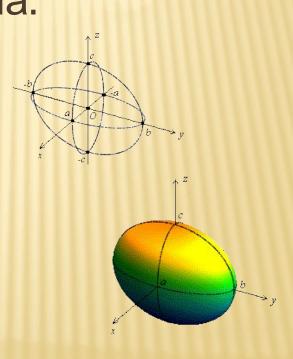

$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2},$$


a, b, с положительные числа.



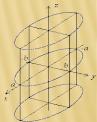
Параболоиды

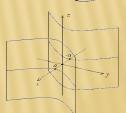
Гиперболическим параболоидом называется поверхность, уравнение которой в некоторой декартовой системе координат имеет вид а, b, c положительные удисла.

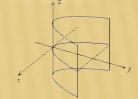


эллипсоид

поверхность, каноническое уравнение

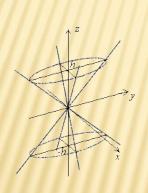

которой имеет вид
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
, a, b, c положительные числа.

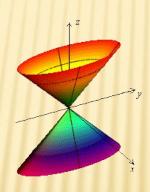

ЦИЛИНДРЫ


Цилиндрической поверхностью - геометрическое место параллельных прямых (образующими), пересекающих данную линию (направляющую).

Эллиптический цилиндр задается уравнением $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,

Гиперболический цилиндр задается уравнением




Параболический иилиндр задается,

КОНУСОМ ВТОРОГО ПОРЯДКА

поверхность, уравнение которой в некоторой декартовой системе координат имеет вид

$$\frac{z^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 2, b, c$$
 положительные числа.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2,$$

