ПРОСТРАНСТВЕННАЯ СИСТЕМА СИЛ

Преподаватель «Основы технической механики» Шингисова Макпал Байшотовна КГКП «Павлодарский химикомеханический колледж» г. Павлодар 2020 год

Студент должен:

иметь представление:

- о пространственных системах сил и их действии на тело.

Знать:

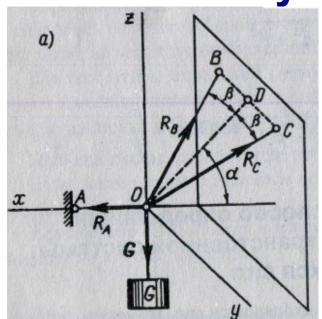
- момент силы относительно оси, свойства момента;

- аналитический способ определения равнодействующей;

-условия равновесия.

Уметь:

-выполнять разложение силы на три взаимно перпендикулярные оси;


-определять момент силы относительно оси;

-определять реакции в опорах и выполнить проверку.

система сил, линии действия которых расположены в различных плоскостях.

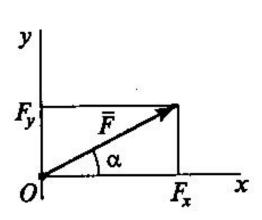
1. Пространственная системой сходящихся сил (пространственный пучок сил)

Пространственная система сил называется сходящейся, если линии действия всех сил системы пересекаются в одной точке.

Теорема о равнодействующей пространственной ССС.

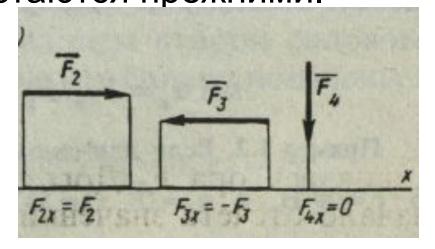
Пространственная система сходящихся сил эквивалентна равнодействующей, которая равна векторной сумме этих сил; линия действия равнодействующей проходит через точку пересечения линий действия составляющих сил системы.

$$F_{\Sigma} = \sum Fi$$


Силовой многоугольник пространственной системы сил не лежит в одной плоскости, поэтому геометрический и графический способы нахождения равнодействующей неприемлемы.

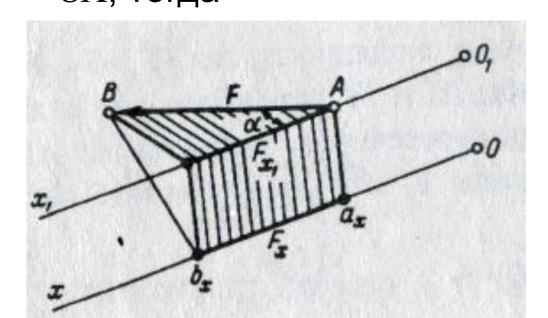
Применяется только аналитический способ (метод проекций).

Проекция силы на ось в пространстве


а) Сила и ось лежат в одной плоскости

Определение проекций силы на ось, лежащих в одной плоскости, остаются прежними.

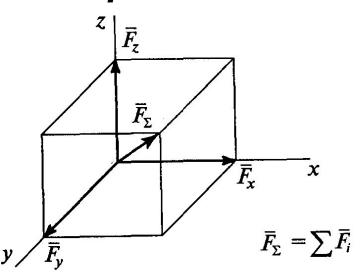
$$F_x = \overline{F}\cos\alpha$$


$$F_y = \overline{F}\sin\alpha$$

Проекция силы на ось в пространстве

б) Сила и ось не лежат в одной плоскости

Для определения проекции силы F на ось OX, мысленно проводят через начало или конец силы ось O_1X_1 , параллельную данной оси OX, тогда $Fx_1=F \cdot cos \alpha$,


Tak kak $Fx_1 = Fx$,

To $Fx = F \cdot cos\alpha$,

м

Разложение силы по трём осям координат

Равнодействующая трёх взаимно перпендикулярных сил равна по модулю и направлена по диагонали параллелепипеда, построенного на этих силах.

$$F=Fx+Fy+Fz$$

Модуль и направление равнодействующей силы :

• - модуль
$$F_{\Sigma}$$
 $F_{\Sigma} = \sqrt{Fx^2 + Fy^2 + Fz^2} = \sqrt{(\sum Xi)^2 + (\sum Yi)^2 + (\sum Zi)^2}$

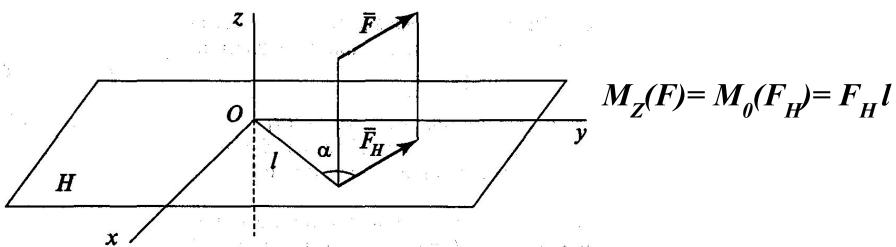
lacksquare - направление \mathbf{F}_{Σ}

$$\begin{aligned} &\cos(F_{\Sigma}, X) = Fx/F_{\Sigma} = \sum Xi/F_{\Sigma} \\ &\cos(F_{\Sigma}, Y) = Fy/F_{\Sigma} = \sum Yi/F_{\Sigma} \\ &\cos(F_{\Sigma}, Z) = Fz/F_{\Sigma} = \sum Zi/F_{\Sigma} \end{aligned}$$

Аналитическое условие равновесия пространственной ССС

Для равновесия пространственной ССС необходимо и достаточно, чтобы равнодействующая системы, а значит и её проекции на оси координат X,Y и Z были равны 0.

$$1)\sum Fix = \sum X = 0$$


$$F_{\Sigma} = 0$$

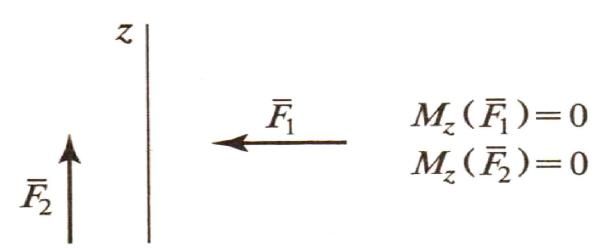
$$2)\sum Fiy = \sum Y = 0$$

$$3)\sum Fiz = \sum Z = 0$$

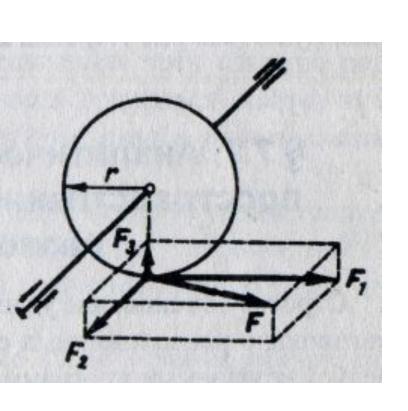
2 МОМЕНТ СИЛЫ ОТНОСИТЕЛЬНО ОСИ

Момент силы относительно оси равен произведению проекции этой силы на плоскость перпендикулярную к данной оси, на плечо.

Плечо силы h(l) относительно оси - это перпендикуляр опущенный из точки пересечения оси с плоскостью, на линию действия проекции


Правило знаков

Момент силы относительно оси будем считать положительным, если сила стремится вызвать вращение против **часовой стрелки**, момент силы считаем отрицательным, если она стремится вызвать вращение по часовой стрелке. При этом необходимо смотреть на плоскость перпендикулярно данной оси с её положительного конца.


Момент силы относительно оси равен нулю в 2 случаях:

- 1. Если линия действия силы перпендикулярна оси $\mathbf{F_1} \perp \mathbf{Z}$, т.к. $h(l) = \mathbf{0}$
 - 2. Если вектор силы параллелен оси

$$\mathbf{F}_2/\!/\mathbf{Z}$$
 , T.K. $\mathbf{F}_H = \mathbf{0}$

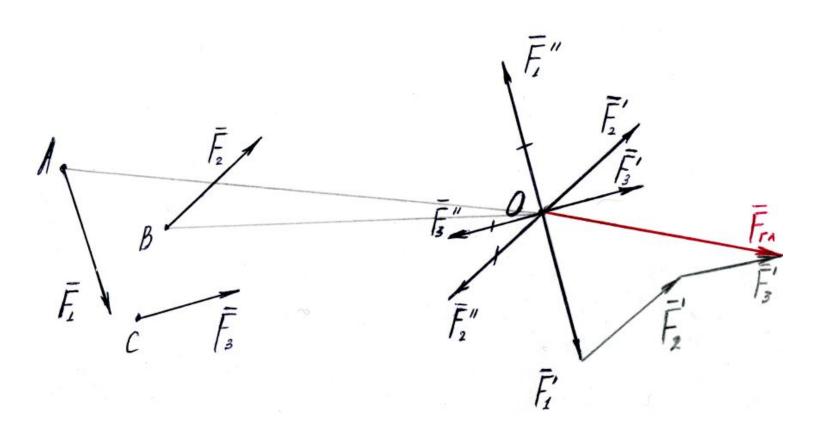
Пример: В червячной передаче червяк передает червячному колесу, укрепленному на валу, силу *F*, не лежащую в плоскости, перпендикулярной оси.

Разложим силу *F* на три взаимно перпендикулярные составляющие :

F₁ (окружная сила), вызывает вращательное движение, которое измеряется моментом

$$Mz(F_1) = F_1 r$$

 F_2 (осевая сила) стремится сдвинуть колесо вдоль оси


F3 (радиальная сила) стремится изогнуть ось колеса

3. Пространственная система произвольно расположенных сил -

это система сил, линии действия, которых не лежат в одной плоскости и не пересекаются в одной точке

Приведение произвольной пространственной системы сил к заданному центру

(Аналогично плоской системе произвольно расположенных сил – Teма 1.4)

Приведение произвольной пространственной системы сил к заданному центру

Пространственная система произвольно расположенных сил в общем случае эквивалентна одной силе, приложенной в центре приведения и одной паре сил

Произвольная пространственная система сил приводится к главному вектору и главному моменту.

Модуль и направление главного вектора :

- модуль
$$F_{\Gamma JI}$$

$$F_{\Gamma J} = \sqrt{Fx^2 + Fy^2 + Fz^2} = \sqrt{(\sum Xi)^2 + (\sum Yi)^2 + (\sum Zi)^2}$$

lacksquare - направление $\mathbf{F}_{\Gamma\!\Pi}$

$$Cos(Fr\pi; x) = \sum Xi / Fr\pi$$

$$Cos(Fr\pi; y) = \sum Yi / Fr\pi$$

$$Cos(Fr\pi; z) = \sum Zi/Fr\pi$$

Модуль главного момента:

 Алгебраическая сумма моментов всех сил системы относительно каждой оси.

$$M_{\Gamma JI} = \sqrt{(\sum M_X(Fi))^2 + (\sum M_Y(Fi))^2 + (\sum M_Z(Fi))^2}$$

равновесия пространственной системы произвольно расположенных сил

Алгебраическая сумма проекций всех сил на три взаимно перпендикулярные оси координат должна быть равна нулю и алгебраическая сумма моментов всех сил, относительно тех же осей, должна быть равна нулю

1)
$$\sum X = \sum Fi \ x = 0$$
 4) $\sum Mx(Fi) = 0$
Fгл = 0 2) $\sum Y = \sum Fi \ y = 0$ Мгл = 0 5) $\sum My(Fi) = 0$
3) $\sum Z = \sum Fi \ z = 0$ 6) $\sum Mz(Fi) = 0$

Домашнее задание

Опрос «Пространственная система сил»

- 1) Понятие пространственной системы сил.
- 2) Теорема о пространственной системе сходящихся сил
- 3) Условие равновесия пространственной системы сходящихся сил (с уравнениями).
- 4) Условие равновесия пространственной системы произвольных сил (с уравнениями).
- 5) Понятие момента относительно оси (с уравнениями).