ПНИКТОГЕНЫ

р-элементы V группы; VA группа; 15 группа

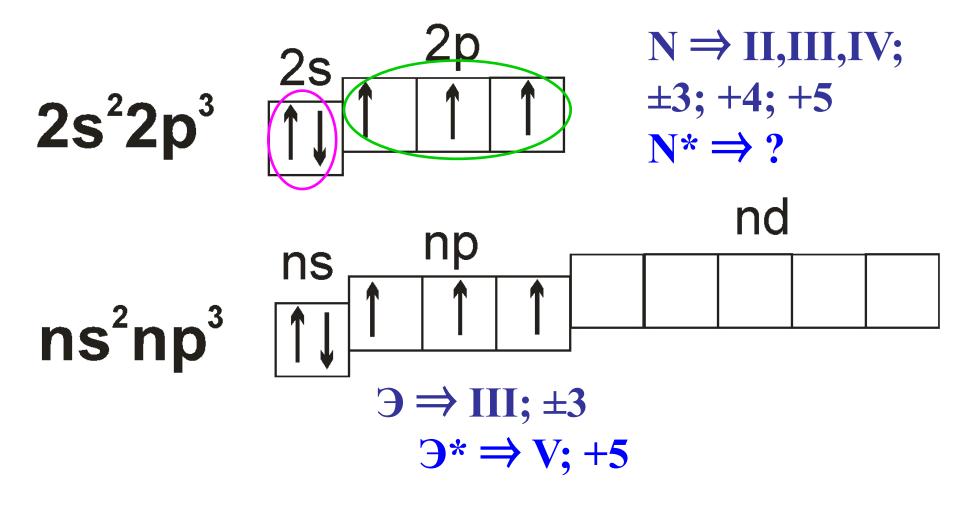
Азот	N	(+7)) 2 5		A	Ва
Фосфор	Р	(+15))) 2 8 5	атома	льност	свойства
Мышьяк	As	(+33))))) 2 8 18 5	Радиус	Электроотрицательность	ьные
Сурьма	Sb	(+51)))))) 2 8 18 18 5		ектроо	Окислительные
Висмут	Bi	(+83))))))) 2 8 18 32 18 5	VPO	हूं пичеі	

Московий **Мс**

 К элементам V группы, главной подгруппы относятся азот N, фосфор P, мышьяк As, сурьма Sb, висмут Bi

Общее название - пниктогены (греческий корень "пникт" - "удушливый", "плохо пахнущий"), Так охарактеризованы запахи водородных соединений этих элементов

N, P - типичные неметаллы
As, Sb - проявляют
неметаллические и металлические
свойства
Bi - типичный металл


1 2 13 14 <u>15</u> 16 17 18

Н							(H)	Не
Li	Be		В	С	N	О	F	Ne
Na	Mg		Al	Si	P	S	Cl	Ar
K	Ca		Ga	Ge	As	Se	Br	Kr
Rb	Sr	d-block	In	Sn	Sb	Te	I	Xe
Cs	Ba		T1	Pb	Bi	Po	At	Rn
Fr	Ra				•			

Простые вещества

Вещество	Агрегатное состояние	Цвет	Свойства	t пл	t кип
N_2	Газ	Бесцветный	Неметалл	-210	-196
Р	Твердый	Желтый Красный Чёрный	Неметалл	44,1	280
As	Кристаллы	Серый	Неметаллические и металлические свойства	613	
Sb	Кристаллы	Серый	Неметаллические и металлические свойства	630,7	1750
Bi	Кристаллы	Серый	Металл	271,3	1560

N, P, As, Sb, Bi электронная конфигурация

Азот: примеры соединений

<u>Устойчивые</u> ст. ок.: –3; 0; +5

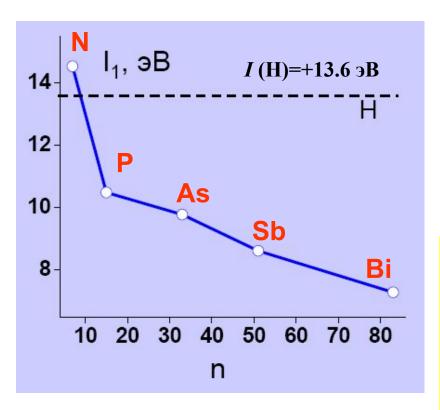
```
NH<sub>3</sub>, NH<sub>4</sub>X, KNH<sub>2</sub>, Mg<sub>3</sub>N<sub>2</sub>
-3
             N<sub>2</sub>H<sub>4</sub>, N<sub>2</sub>H<sub>5</sub>CI
-2
             NH<sub>2</sub>OH, NH<sub>2</sub>CI, (HN<sub>3</sub>)
-1
             N_2, (HN_3)
             N_2O_1, (H_2N_2O_2)
+1
             NO, (H_2N_2O_3)
+2
             NOCI, NCI<sub>3</sub>; N<sub>2</sub>O<sub>3</sub>, HNO<sub>2</sub>
+3
             NO_2, N_2O_4
+4
             N_2O_5, HNO_3; Me(NO_3)_n, NH_4NO_3
+5
```

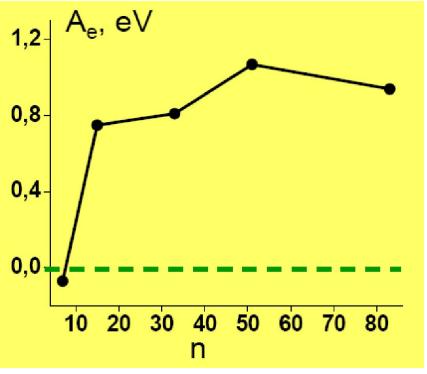
Фосфор: примеры соединений

Устойчивая ст. ок.: +5

-3	PH_3 , Mg_3P_2
-2	P ₂ H ₄
0	P, P ₄ , P _n
+1	H_3PO_2 , $NaP(H_2)O_2$,
+3	P ₂ O ₃ , H ₃ PO ₃ , PCI ₃
(+4)	$(H_4P_2O_6)$
+5	P ₂ O ₅ , PCI ₅ , H ₃ PO ₄ ,H ₄ P ₂ O ₇

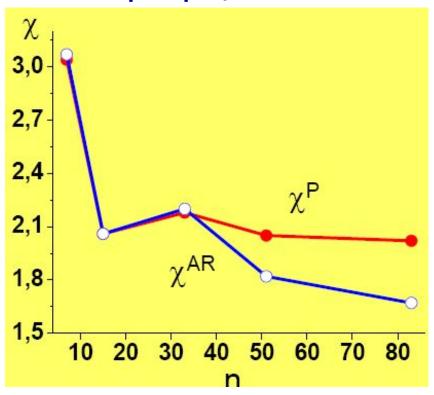
As, Sb, Bi: примеры соединений

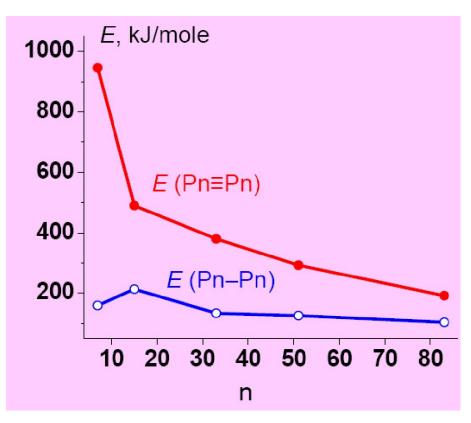

<u>Устойчивые</u> ст. ок.: +3 As, Bi; +5 Sb


-3	$\mathbf{9H_3}$
0	Э
+3	Э ₂ О ₃ , H ₃ ЭО ₃ , ЭСІ ₃
+5	Э ₂ О ₅ , НЭО ₃ , Н ₃ ЭО ₄
	Э ≠ Ві !!!

Изменение физических характеристик атомов

	N	Р	As	Sb	Bi
Радиус (пм)	75	110	122	143	152
I ₁ (эВ)	14.53	10.49	9.78	8.62	7.29
I ₂ (эВ)	29.60	19.72	18.63	16.54	16.69
I ₅ (эВ)	97.89	65.02	62.63	56.00	56.00
A _e (эВ)	-0.07	0.75	0.81	1.07	0.94
χ^{P}	3.04	2.06	2.18	2.05	2.02
χ^{AR}	3.07	2.06	2.20	1.82	1.67


Изменение физических характеристик атомов


Изменение физических характеристик атомов

Электроотрицательность

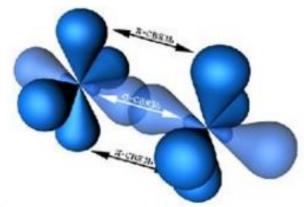
- 1) Характерна катенация: P, As,Sb;
- 2) Устойчивые кратные связи: N_2 .

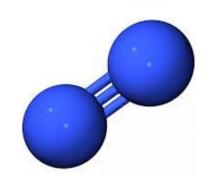
Энергия одинарной и тройной связи

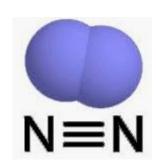
Простые вещества пниктогенов

	N	P	As	Sb	Bi
Т.пл. (°С)	-210	44	615(субл	630	272
Т.кип. (°C)	-195.8	257	_	1634	1564
Аллотропия	только N ₂	$egin{array}{cccccccccccccccccccccccccccccccccccc$	As _n серый (крист) As ₄ желтый (аморф)	Sb _n серая (крист) Sb ₄ желтая (аморф)	
∆G _{св} кДж/моль	N–N 160 N=N 432	P-P 214	As–As 134	Sb-Sb 126	Bi–Bi 104
	N≡N 946	P≡P 490	As≡As 380	Sb≡Sb 293	Bi≡Bi 192

A30T, N_2


$$\dot{N} \cdot + \dot{N} := N :: N$$


- Молекулярное строение в паре, жидкости и твердой фазе
- Симметричное распределение электронной плотности



- 4. $\mu = 0$
- Низкая реакционная способность
- 6. При н.у. реагирует только с Li:

$$6Li + N_2 = 2Li_3N$$

1. С металлами при нагревании

$$3Mg + N_2 = Mg_3N_2$$
 450°C
 $2Ti + N_2 = TiN$ 800°C
 $2AI + N_2 = AIN$ 900°C

C H₂ на катализаторе

$$N_2 + 3H_2 = 2NH_3$$
 (процесс Боша-Габера)

3. C O₂ в электрическом разряде

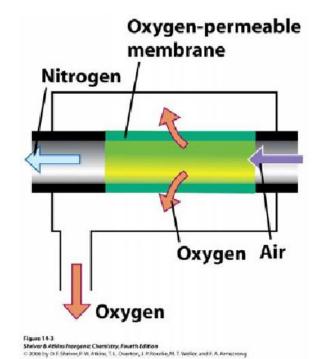
$$N_2 + O_2 = 2NO$$

4. С комплексами переходных металлов Дополнительно: фиксация N_2 [Ru(NH₃)₅]Cl₃ + N₂ + Zn/Hg = [Ru(NH₃)₅(N₂)]Cl₂ + ZnCl₂ + Hg + H₂O

- 1. Азот составляет 78% воздуха (по объему) или 76% (по массе)
- 2. Промышленное получение азота:

фракционирование воздуха или

разделение воздуха на мембранах


3. Получение азота в лаборатории:

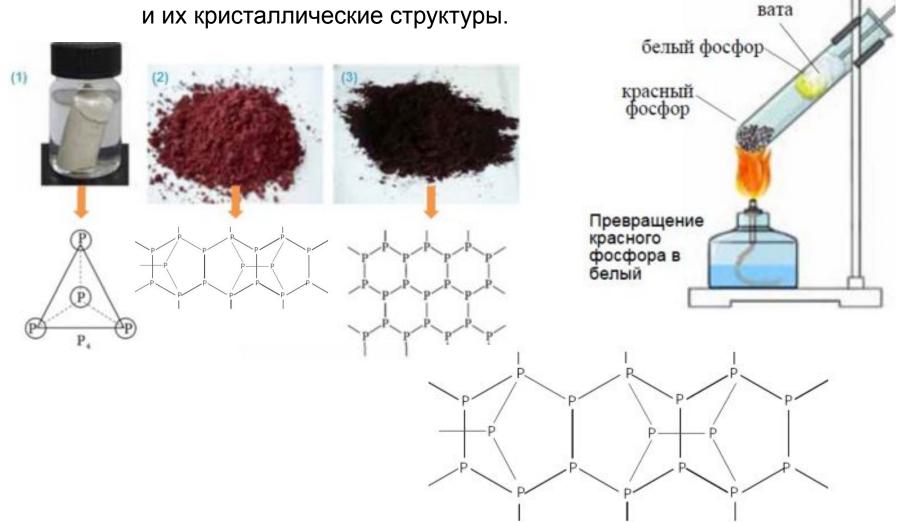
$$2NaN_3 = 2Na + 3N_2 \qquad (t^\circ)$$

$$NH_4NO_2 = N_2 + 2H_2O$$
 (t°)

- 4. Основное применение:
 - создание инертной атмосферы
 - синтез аммиака
 - охлаждение

Фосфор: P₄, P_n, P_∞

d(P-P) = 219-223 пм Фосфор Гитторфа (фиолетовый) Сложная слоистая структура: Р₇ и Р₈, «сшитые» в слои


Красный фосфор неупорядоченный вариант фосфора Гитторфа

Фосфор высокого давления (кубический)

Фосфор: P₄, P_n, P_∞

Белый (1), красный (2) и черный (3) фосфор и их кристаллические структуры.

P ₄	P _n	- P ∞
Белый фосфор	Красный фосфор	Черный фосфор
Белое воскообразное вещество	красное вещество	черные кристаллы полупроводник
d=1.83 г/см ³ очень мягкий	d≈2.3 г/см ³	d=2.69 г/см ³ твердый, хрупкий
Летуч, люминофор, самовозгорается при 25°C	не летуч, само- возгорается при 260°C	не летуч, не горит
Растворим в CS_2 , PCI_3 , C_6H_6 , $T\Gamma\Phi$, SO_2	растворим в Hg	растворитель неизвестен
Реагирует с ОН ⁻ , легко окисляется	окисляется сильными окислителями	окисляется сильными окислителями
Очень токсичен	мало токсичен	нетоксичен
Существует в виде Р ₄	возгоняется с образованием Р	стабилен термодинамически

Хим. свойства фосфора

1. Р₄ – термодинамически стандартное состояние по определению

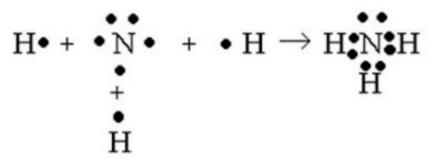
2. Белый фосфор очень реакционноспособен

$$P_4 + 5O_2 = 2P_2O_5$$
 самовозгорание $P_4 + 3NaOH + 3H_2O = PH_3 + 3NaH_2PO_2$ $P_4 + 2OHNO_3$ (конц) = $4H_3PO_4 + 2ONO_2 + 4H_2O$ в растворе ДМФ

3. Красный фосфор окисляется в разных условиях

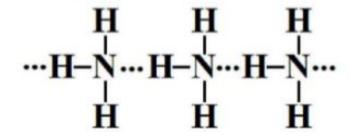
$$2P + 5CI_2 = 2PCI_5$$
 (+PCI₃)
 $2P + 5CuSO_4 + 8H_2O = Cu + 2H_3PO_4 + 5H_2SO_4$
 $6P + 5KCIO_3 = 3P_2O_5 + 5KCI$ механоактивация
 $P + O_2 \rightarrow P_2O_5 + P_2O_3$ (изб. / недост. O_2)

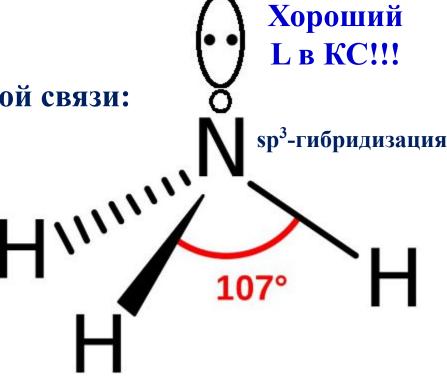
Основные минералы фосфора: Са₃(PO₄)₂ фосфорит, Са₅(PO₄)₃(OH,F) апатит


$$2Ca_3(PO_4)_2 + 6SiO_2 + 10C = 6CaSiO_3 + 10CO + P_4$$

Важнейшие статьи применения:

- фосфорные удобрения
- пищевая промышленность
- химический синтез (H_3PO_4, P_2O_5, PCI_3)


АММИАК ЭН3


Схема образования ковал. полярной связи:

- Возникает в молекулах или между молекулами, в состав которых входит атом водорода и наиболее электроотрицательный атом (F, O, N).
- Пример: NH₃, H₂O, HF

ММВ: схема образования Н-связи

Соединения Э с водородом

NH₃ – аммиак

 N_2H_4 — гидразин

 N_3 H (HN₃) – азидоводород; H–N←:N≡N:

NH₂OH – гидроксиламин

РН3 – фосфин

 AsH_3 — арсин

 SbH_3 — стибин

Восстановительная способность ЭН3:

$$NH_3 << PH_3 < AsH_3 < SbH_3$$

Получение гидридов:

$$NH_4CI + NaOH \rightarrow NaCI + H_2O + NH_3\uparrow$$
 $Mg_3P_2 + HCI \rightarrow MgCl_2 + PH_3\uparrow$
 $[As] + Zn + HCI \rightarrow ZnCl_2 + AsH_3\uparrow$
 $(As_2O_3, AsCl_3 Na_3AsO_3,...)$ *Peakyus Mapwa*

Оксиды азота

$$+3 N_2O_3$$

$$+4 NO_2 (N_2O_4)$$

$$+5 N_2O_5$$

Получение оксидов азота

$$NH_4NO_3 \rightarrow H_2O + N_2O^{\uparrow}$$

$$N_2 + O_2 o NO$$
 t=2000°C или эл. разряд

Cu + HNO₃(разб.)
$$\rightarrow$$
 Cu(NO₃)₂ + H₂O + NO↑
(NO + NO₂)↑

$$NO + NO_2 \rightarrow N_2O_3$$

·NO + ·O₂·
$$\rightarrow$$
 ·NO₂ t=25°C, T.e. cT.y.!!!

$$\bullet NO_2 \to N_2O_4$$
 димеризация из-за несп. е

$$Pb(NO_3)_2 \rightarrow PbO + NO_2 \uparrow + O_2 \uparrow$$

$$HNO_3 + P_2O_5 \rightarrow HPO_3 + N_2O_5$$

Гидроксиды азота ⇒ кислоты

 $H_2N_2O_2$ — азотноватистая

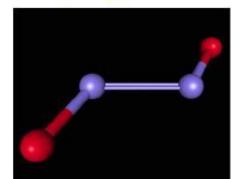
 $H_2N_2O_3$ — азотноватая

 HNO_2 — азотистая — нитриты

 HNO_3 — азотная — нитраты

HNO₄ – пероксоазотная (HOONO₂) тв. соли не известны

Кислородные кислоты азота


H2N2O2

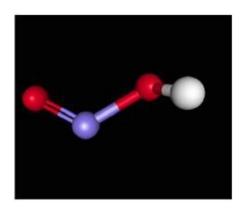
азотноватистая

N+1

Бесцветное твердое вещество

$$pKa_1 = 8.1$$

 $pKa_2 = 11$

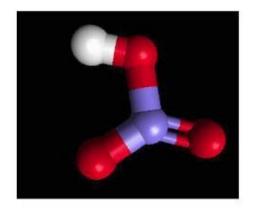

 HNO_2

азотистая

N+3

в растворе

$$pK_a = 3.37$$


HNO₃

азотная

N+5

бесцветная жидкость

$$pK_a = -1.64$$

Особые св-ва азотной кислоты

- 1) **Автопротолиз** в б/в состоянии (т.е. самоионизация): $HNO_3 + 2 HNO_3 \rightarrow NO_2^+ + 2 NO_3^- + H_3O^+$
- 2) Нитрующая смесь смесь конц. к-т: $H_2SO_4 + HNO_3 \rightarrow HSO_4^- + NO_2^+ + H_2O$
- NO₂⁺ катион **нитроила**, N(+5); окислитель и нитрующий агент

Кислородные кислоты азота

1. Свойства H₂N₂O₂

$$H_2N_2O_2 = H_2O + N_2O$$

2. Получение HNO₂

$$Ba(NO_2)_2 + H_2SO_4 = 2HNO_2 + BaSO_4 \downarrow$$

$$N_2O_3 + H_2O = 2HNO_2$$

$$3HNO_2 = 2NO + HNO_3 + H_2O$$

медленно

3. Red/ox свойства HNO₂

$$HNO_2 + Br_2 + H_2O = 2HBr + HNO_3$$

$$E^{0}(NO_{2}^{-}/N_{2}O) = +0.15 B$$

$$E^{0}(NO_{2}^{-}/N_{2}O) = +0.15 B$$
 $E^{0}(HNO_{2}/N_{2}O) = +1.30 B$

$$HNO_2 + FeCl_2 + HCl = FeCl_3 + NO + H_2O$$

$$2HNO_2 + 2SnCl_2 + 8HCl = 3H_2O + 2H_2SnCl_6 + N_2O$$

$$NaNO_2 + 3Zn + 5NaOH + 5H_2O = 3Na_2[Zn(OH)_4] + NH_3$$

Азотная кислота

Безводная HNO₃ медленно разлагается при н.у.

$$4HNO_3 = 4NO_2 + 2H_2O + O_2$$

Образует азеотроп (68%) с водой (т.кип.=120.8°C) устойчивый при н.у.

2. HNO₃ реагирует почти со всеми металлами

(кроме Au, Ta, Hf, Re, Pt, Os, Ir, Rh, Ru)
8Fe +
$$30HNO_3$$
 (p) = $8Fe(NO_3)_3 + 3NH_4NO_3 + 9H_2O$
 $Sn + 4HNO_3$ (к) = $SnO_2 + 4NO_2 + 2H_2O$

3. Безводная HNO₃ реагирует с неметаллами

(S, Se, Te, I, ...)

$$6S + 6HNO_3 (6/B) = H_2SO_4 + 6NO_2 + 2H_2O$$

4. Концентрированная HNO₃ пассивирует некоторые металлы (Al, Cr, Fe, ...)

Азотная кислота

Получение HNO₃

$$4NH_3 + 5O_2 = 4NO + 6H_2O$$
 p, t^o , kat .
 $2NO + O_2 = 2NO_2$ $(2NO_2 \Leftrightarrow N_2O_4)$
 $2NO_2 + H_2O = HNO_3 + HNO_2$
 $2HNO_2 = NO + NO_2 + H_2O$
 $3NO_2 + H_2O = 2HNO_3 + NO$

6. Нитраты

растворимы в воде, разлагаются при нагревании

$$2\mathsf{KNO}_3$$
 = $2\mathsf{KNO}_2$ + O_2 to $2\mathsf{Cd}(\mathsf{NO}_3)_2$ = $2\mathsf{CdO} + 2\mathsf{NO}_2 + \mathsf{O}_2$ $2\mathsf{AgNO}_3$ = $2\mathsf{Ag} + 2\mathsf{NO}_2 + \mathsf{O}_2$ окислители в кислой среде и в расплаве MnO_2 (тв) + $2\mathsf{KOH}$ (ж) + KNO_3 (ж) = $\mathsf{K}_2\mathsf{MnO}_4$ + KNO_2 + $\mathsf{H}_2\mathsf{O}$

Реакции HNO₃ с простыми веществами

 $HNO_3 + P, C, S, As, B, I_2, Se \rightarrow H_m \ni O_n + ...$

$$HNO_3 + Me \rightarrow Me^{+n}(NO_3)_n + X + H_2O$$
 Конц./разб.

$$X = NH_4^{-3}$$
, N_2^{+1} , N_2^{+2} , N_2^{+2} , N_2^{+3} , N_2^{+4} , N_2^{+4}

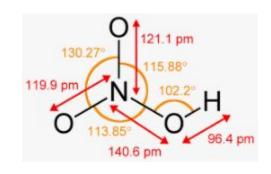
Продукт восст-я X зависит от: 1) конц. к-ты; 2) активности Me. Общая установка: чем меньше конц-я HNO_3 и больше активность металла (меньше E°), тем глубже восстанавливаются атомы N(+5).

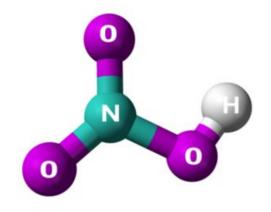
Получение кислот азота (лаб.)

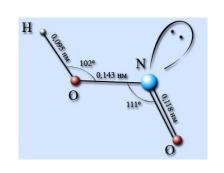
Ст.ок. +3; Вал. III

$$N_2O_3 + H_2O \rightarrow HNO_2$$

$$H \sim_{O} \sim_{N} \sim_{O}$$


$$Ba(NO_2)_2 + H_2SO_4 \rightarrow BaSO_4 \downarrow + HNO_2$$
 95,4 pm


$$NO_2 + H_2O$$
 (холод) \rightarrow **HNO**₂ + HNO₃


$$N_2O_5 + H_2O \rightarrow HNO_3$$

$$NaNO_3(тв) + H_2SO_4(конц) \rightarrow NaHSO_4 + HNO_3 \uparrow$$

$$HNO_2 \rightarrow NO^{\uparrow} + NO_2^{\uparrow} + H_2O$$

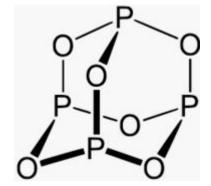
 $HNO_2 \rightarrow HNO_3 + NO^{\uparrow} + H_2O$

$$HNO_3 \rightarrow NO_2 \uparrow + O_2 \uparrow + H_2O$$

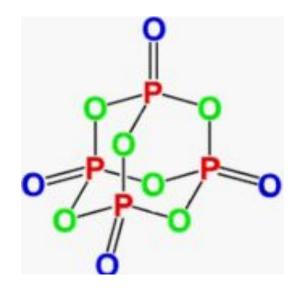
Получение азотной кислоты в пром-ти

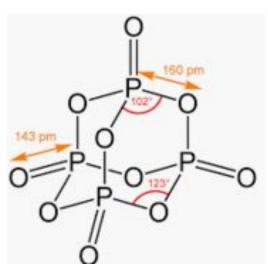
$$N_2 \rightarrow NH_3 \rightarrow NO \rightarrow NO_2 \rightarrow HNO_3$$

$$N_2 + H_2 \rightarrow NH_3$$
 $NH_3 + O_2 \rightarrow NO + H_2O$
 $NO + O_2 \rightarrow NO_2$
 $NO_2 + O_2 + H_2O \rightarrow HNO_3$

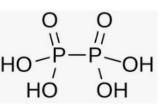

Оксиды фосфора

$$P + O_2 \rightarrow P_x O_y$$
 (изб./недост. O_2)


P₄O₆ P₄O₇ P₄O₈ P₄O₉ P₄O₁₀



Бред!!!

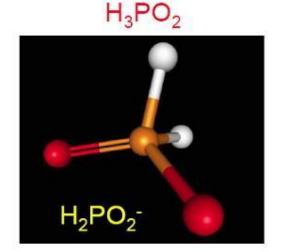


Гидроксиды фосфора ⇒ кислоты

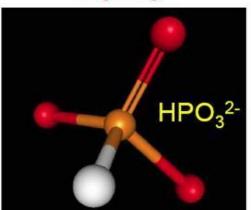
H₃PO₂ – фосфорноватистая (гипофосфиты)

H₃PO₃ – фосфористая (фосфиты)

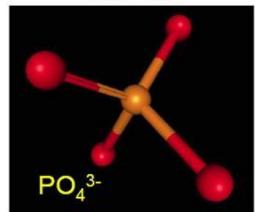
[Н₄Р₂О₆ -фосфорноватая (гипофосфаты)]


НРО₃ – метафосфорная (метафосфаты)

H₃PO₄ – ортофосфорная (ортофосфаты)


 $H_4P_2O_7$ – дифосфорная (дифосфаты)

xP₂O₅·yH₂O – полифосфорная (полифосфаты)


Кислородные кислоты фосфора

Увеличение числа связей Р-Н

Уменьшение числа групп ОН

Увеличение силы кислот

$$pKa = 1.24$$

$$pKa_1 = 2.00$$

$$pKa_2 = 6.59$$

$$pKa_1 = 2.21$$

$$pKa_2 = 7.21$$

$$pKa_3 = 12.67$$

Кислородные кислоты фосфора

Фосфорноватистая кислота Н₃РО₂

$$Ba(H_2PO_2)_2 + H_2SO_4 = 2H_3PO_2 + BaSO_4 \downarrow$$
 получение $2H_3PO_2 = H_3PO_4 + PH_3$ (to) диспропорционирование

Сильный восстановитель

$$H_3PO_2 + 4FeCl_3 + H_2O = H_3PO_4 + 4FeCl_2 + 4HCl$$

 $NaH_2PO_2 + 4AgNO_3 + H_2O = H_3PO_4 + 4Ag + NaNO_3 + 3HNO_3$

2. Фосфористая кислота H₃PO₃

$$P_2O_3 + 3H_2O = 2H_3PO_3$$

 $4H_3PO_3 = 3H_3PO_4 + PH_3$ (t°) диспропорционирование

Восстановитель

$$Na_2HPO_3 + 2AgNO_3 + H_2O = H_3PO_4 + 2Ag + 2NaNO_3$$
 (to)

3. Фосфорноватая кислота H₄P₂O₆

Кислородные кислоты фосфора

Фосфорная кислота Н₃РО₄

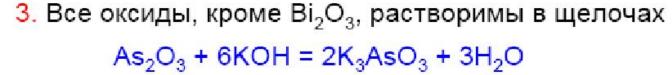
не окислитель, не разлагается

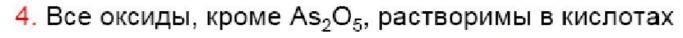
$$\begin{array}{c} E^0(H_3PO_4/H_3PO_3) = -0.29 \ B \\ H_2PO_4^- & \text{ все соли растворимы } \\ HPO_4^{2-} \\ PO_4^{3-} \end{array} \right\} \quad \text{ растворимы только } \\ COЛИ ШМ, кроме Li \\ Na_3PO_4 + 3AgNO_3 = 3NaNO_3 + Ag_3PO_4 \downarrow \qquad \PiP = 10^{-20} \\ Ag_3PO_4 + 3HNO_3 = H_3PO_4 + 3AgNO_3 \\ 12(NH_4)_6Mo_7O_{24} + 51HNO_3 + 7H_3PO_4 = 7(NH_4)_3[PMo_{12}O_{40}]\cdot 3H_2O + \\ 51NH_4NO_3 + 15H_2O \end{array}$$

5. Пирофосфорая и метафосфорная кислоты H₄P₂O₇, HPO₃

$$2H_3PO_4 \xrightarrow{250^{\circ}C} H_4P_2O_7 \xrightarrow{400^{\circ}C} 2HPO_3$$
 $Na_2P_2O_7 + 4AgNO_3 = Ag_4P_2O_7 \downarrow + 4NaNO_3$

Оксиды P, As, Sb, Bi

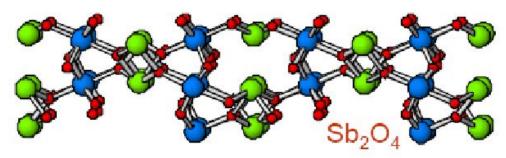

 As_2O_3 Sb₂O₃ Bi₂O₃ P_2O_3 т.субл. 205∘С т.пл. 656°С т.пл. 24°С т.пл. 820°С т.кип. 155°C бесцветный бесцветный бесцветный желтый амфотерный амфотерный кислотный основный P205 As₂O₅ Sb₂O₅ Bi₂O₅ т.субл. 360°С т.разл. 250°С т.разл. 920°С т.разл. ~100°С бесцветный бесцветный бесцветный коричневый кислотный кислотный кислотный кислотный

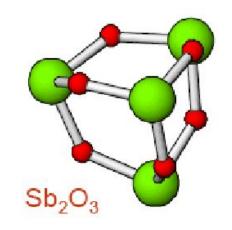

Также известны:

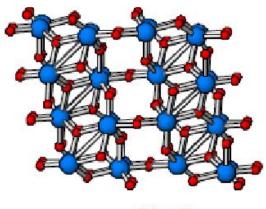
$$P_4O_7$$
 (3 $P_2O_3 \cdot P_2O_5$)
 P_4O_8 ($P_2O_3 \cdot P_2O_5$) Sb₂O₄ (Sb₂O₃·Sb₂O₅)
 P_4O_9 ($P_2O_3 \cdot 3P_2O_5$)

Оксиды As, Sb, Bi

- 1. Все оксиды As,Sb, Ві имеют <u>полимерное</u> строение
- 2. Все оксиды, кроме As_2O_5 , плохо растворимы в воде $As_2O_5 + 3H_2O = 2H_3AsO_4$


$$Sb_2O_3 + 3H_2SO_4 = Sb_2(SO_4)_3 + 3H_2O$$


$$Sb_2O_5 + 12HCI = 2H[SbCl_6] + 5H_2O$$


5. As_2O_5 , Sb_2O_5 , Bi_2O_5 – сильные окислители

$$Bi_2O_5 >> Sb_2O_5 = As_2O_5 (>> P_2O_5)$$

$$Sb_2O_5$$
 (TB) + 10HCl (κ) = $2SbCl_3 + 2Cl_2 + 5H_2O$

 Sb_2O_5

Кислоты/гидроксиды As, Sb, Bi

H₃AsO₃ Sb(OH)₃ Bi(OH)₃ мышьяковистая гидроксид гидроксид сурьмы (III) висмута (III) кислота pKa₁= 9.2 H₃AsO₄ H₃SbO₄ сурьмяная мышьяковая кислота кислота $pKa_1 = 2.25$ $pKa_1 = 4.39$ $pKa_2 = 6.77$

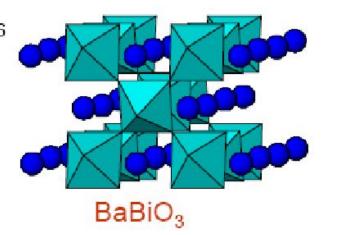
1. H_3AsO_4 – кислота, $Bi(OH)_3$ – основание, остальные амфотерны

 $pKa_3 = 11.60$

Кислоты/гидроксиды As, Sb, Bi

2. H_3AsO_4 , H_3SbO_4 — окислители средней силы, их соли не окислители $E^0(H_3AsO_4/H_3AsO_3) = +0.56$ В $E^0(H_3SbO_4/SbO^+) = +0.58$ В

3. Только H₃AsO₄ можно получить из ангидрида


$$As_2O_5 + 3H_2O = 2H_3AsO_4$$

 $2SbCl_3 + 3Na_2CO_3 + 3H_2O = 2Sb(OH)_3 + 6NaCl + 3CO_2$

4. Для Sb и Bi типичны смешанно-валентные оксиды и их производные


$$Sb_2O_4$$
 $BaBiO_3 \equiv Ba_2Bi^{3+}Bi^{5+}O_6$

Полимеризация Н₃AsO₄

$$H_3AsO_4 \xrightarrow{t^0} H_5As_3O_{10} \xrightarrow{t^0} HAsO_3$$

Сравнение кислородных кислот

Увеличение силы кислот

Усиление окислительной способности