
Constraint Satisfaction Problems
(Chapter 6)



What is search for?
• Assumptions: single agent, 

deterministic, fully observable, 
discrete environment

• Search for planning
– The path to the goal is the 

important thing

– Paths have various costs, depths

• Search for assignment
– Assign values to variables while 

respecting certain constraints

– The goal (complete, consistent 
assignment) is the important thing



Constraint satisfaction problems (CSPs)

• Definition:

– State is defined by variables X
i
 with values from domain D

i

– Goal test is a set of constraints specifying allowable 
combinations of values for subsets of variables

– Solution is a complete, consistent assignment

• How does this compare to the “generic” tree search 
formulation?

– A more structured representation for states, expressed in a 
formal representation language

– Allows useful general-purpose algorithms with more 
power than standard search algorithms



Example: Map Coloring

• Variables: WA, NT, Q, NSW, V, SA, T 

• Domains: {red, green, blue}

• Constraints: adjacent regions must have different colors
e.g., WA ≠ NT, or (WA, NT) in {(red, green), (red, blue), 
(green, red), (green, blue), (blue, red), (blue, green)}



Example: Map Coloring

• Solutions are complete and consistent assignments, e.g., 
WA = red, NT = green, Q = red, NSW = green, 
V = red, SA = blue, T = green



Example: n-queens problem

• Put n queens on an n × n board with no two queens on the 
same row, column, or diagonal



Example: N-Queens

• Variables: X
ij

• Domains: {0, 1}

• Constraints:
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N-Queens: Alternative formulation

• Variables: Q
i

• Domains: {1, … , N}

• Constraints:

∀ i, j non-threatening (Q
i 
, Q

j
)

Q
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Q
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Q
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Example: Cryptarithmetic

• Variables: T, W, O, F, U, R
   X

1
, X

2

• Domains: {0, 1, 2, …, 9}
• Constraints: 

O + O = R + 10 * X
1

W + W + X
1
 = U + 10 * X

2

T + T + X
2
 = O + 10 * F

Alldiff(T, W, O, F, U, R)
T ≠ 0, F ≠ 0

X2 X1



Example: Sudoku

• Variables: X
ij

• Domains: {1, 2, …, 9}

• Constraints:

Alldiff(X
ij
 in the same unit) X

ij



Real-world CSPs

• Assignment problems
– e.g., who teaches what class

• Timetable problems
– e.g., which class is offered when and where?

• Transportation scheduling

• Factory scheduling

• More examples of CSPs: http://www.csplib.org/



Standard search formulation 
(incremental)

• States: 

– Variables and values assigned so far

• Initial state:

– The empty assignment 

• Action:

– Choose any unassigned variable and assign to it a value 
that does not violate any constraints

• Fail if no legal assignments

• Goal test: 

– The current assignment is complete and satisfies all 
constraints



Standard search formulation 
(incremental)

• What is the depth of any solution (assuming n variables)? 

n  (this is good)

• Given that there are m possible values for any variable, how 
many paths are there in the search tree?

n! · mn  (this is bad)

• How can we reduce the branching factor?



Backtracking search

• In CSP’s, variable assignments are commutative

– For example, [WA = red then NT = green] is the same as 
[NT = green then WA = red]

• We only need to consider assignments to a single variable at 
each level (i.e., we fix the order of assignments)

–  Then there are only mn  leaves

• Depth-first search for CSPs with single-variable assignments is 
called backtracking search
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Backtracking search algorithm

• Making backtracking search efficient:
– Which variable should be assigned next?
– In what order should its values be tried?
– Can we detect inevitable failure early?



Which variable should be assigned 
next?

• Most constrained variable:
– Choose the variable with the fewest legal values

– A.k.a. minimum remaining values (MRV) heuristic
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Which variable should be assigned 
next?

• Most constraining variable:
– Choose the variable that imposes the most 

constraints on the remaining variables

– Tie-breaker among most constrained variables



Which variable should be assigned 
next?

• Most constraining variable:
– Choose the variable that imposes the most 

constraints on the remaining variables

– Tie-breaker among most constrained variables



Given a variable, in which order should 
its values be tried?

• Choose the least constraining value:
– The value that rules out the fewest values in the 

remaining variables



Given a variable, in which order should 
its values be tried?

• Choose the least constraining value:
– The value that rules out the fewest values in the 

remaining variables
Which assignment 

for Q should we 
choose?



Early detection of failure

Apply inference to reduce the space of possible 
assignments and detect failure early 
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Early detection of failure:
Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values
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Early detection of failure:
Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values



Constraint propagation

• Forward checking propagates information from assigned to 
unassigned variables, but doesn't provide early detection for all 
failures

• NT and SA cannot both be blue!

• Constraint propagation repeatedly enforces constraints locally



• Simplest form of propagation makes each pair of variables 
consistent:
– X 🡪Y is consistent iff for every value of X there is some allowed value of Y

Arc consistency

Consistent!
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• Simplest form of propagation makes each pair of variables 
consistent:
– X 🡪Y is consistent iff for every value of X there is some allowed value of Y

– When checking X 🡪Y, throw out any values of X for which there isn’t an 
allowed value of Y

• If X loses a value, all pairs Z 🡪 X need to be rechecked
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• Simplest form of propagation makes each pair of variables 
consistent:
– X 🡪Y is consistent iff for every value of X there is some allowed value of Y

– When checking X 🡪Y, throw out any values of X for which there isn’t an 
allowed value of Y

• Arc consistency detects failure earlier than forward checking

• Can be run before or after each assignment

Arc consistency



Arc consistency algorithm AC-3



Does arc consistency always detect the 
lack of a solution?

• There exist stronger notions of consistency (path 
consistency, k-consistency), but we won’t  worry 
about them

A
B

C
D

A

B

C

D



Tree-structured CSPs

• Certain kinds of CSPs can 
be solved without 
resorting to backtracking 
search!

• Tree-structured CSP: 
constraint graph does 
not have any loops

Source: P. Abbeel, D. Klein, L. Zettlemoyer



Algorithm for tree-structured CSPs

• Choose one variable as root, order variables from root to leaves 
such that every node's parent precedes it in the ordering

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs



Algorithm for tree-structured CSPs

• Choose one variable as root, order variables from root to leaves 
such that every node's parent precedes it in the ordering

• Backward removal phase: check arc consistency starting from the 
rightmost node and going backwards

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs



Algorithm for tree-structured CSPs

• Choose one variable as root, order variables from root to leaves 
such that every node's parent precedes it in the ordering

• Backward removal phase: check arc consistency starting from the 
rightmost node and going backwards

• Forward assignment phase: select an element from the domain of 
each variable going left to right. We are guaranteed that there will 
be a valid assignment because each arc is consistent 

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs



Algorithm for tree-structured CSPs

• If n is the numebr of variables and m is the 
domain size, what is the running time of this 
algorithm?
– O(nm2): we have to check arc consistency once 

for every node in the graph (every node has one 
parent), which involves looking at pairs of domain 
values



Nearly tree-structured CSPs

• Cutset conditioning: find a subset of variables whose 
removal makes the graph a tree, instantiate that set in all 
possible ways, prune the domains of the remaining 
variables and try to solve the resulting tree-structured CSP

• Cutset size c gives runtime O(mc (n – c)m2)

Source: P. Abbeel, D. Klein, L. Zettlemoyer



Algorithm for tree-structured CSPs

• Running time is O(nm2) 
(n is the number of variables, m is the domain size)

– We have to check arc consistency once for every node 
in the graph (every node has one parent), which 
involves looking at pairs of domain values

• What about backtracking search for general CSPs?
– Worst case O(mn)

• Can we do better?



Computational complexity of CSPs
• The satisfiability (SAT) problem:
– Given a Boolean formula, is there an assignment of the 

variables that makes it evaluate to true?

• SAT is NP-complete
– NP: class of decision problems for which the “yes” answer 

can be verified in polynomial time
– An NP-complete problem is in NP and every other problem 

in NP can be efficiently reduced to it (Cook, 1971)
– Other NP-complete problems: graph coloring, 

n-puzzle, generalized sudoku
– It is not known whether P = NP, i.e., no efficient algorithms 

for solving SAT in general are known



Local search for CSPs
• Start with “complete” states, i.e., all variables assigned 

• Allow states with unsatisfied constraints

• Attempt to improve states by reassigning variable values

• Hill-climbing search:
– In each iteration, randomly select any conflicted variable and choose 

value that violates the fewest constraints

– I.e., attempt to greedily minimize total number of violated constraints

h = number of conflicts
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Local search for CSPs
• Start with “complete” states, i.e., all variables assigned 

• Allow states with unsatisfied constraints

• Attempt to improve states by reassigning variable values

• Hill-climbing search:
– In each iteration, randomly select any conflicted variable and choose 

value that violates the fewest constraints

– I.e., attempt to greedily minimize total number of violated constraints

– Problem: local minima

• For more on local search, see ch. 4



CSP in computer vision:
Line drawing interpretation

An example polyhedron:

Domains:  +, –, →, ← 

Variables:  edges

David Waltz, 1975

Desired output:



CSP in computer vision:
Line drawing interpretation

Four vertex types:

Constraints imposed by each vertex type:

David Waltz, 1975



CSP in computer vision: 4D Cities

G. Schindler, F. Dellaert, and S.B. Kang, Inferring Temporal Order of Images From 3D Structure, 
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2007. 

1. When was each photograph taken?
2. When did each building first appear?
3. When was each building removed?

Set of Photographs:
Set of Objects:

Buildings

http://www.cc.gatech.edu/~phlosoft/



CSP in computer vision: 4D Cities

• Goal: reorder images (columns) to have as few violations as possible

observed missing occluded

Columns: images
Rows: points

Violates constraints:

Satisfies constraints:



CSP in computer vision: 4D Cities
• Goal: reorder images (columns) to have as few violations as possible

• Local search: start with random ordering of columns, swap columns 
or groups of columns to reduce the number of conflicts

• Can also reorder the rows to group together points that appear and 
disappear at the same time – that gives you buildings



Summary

• CSPs are a special kind of search problem:
– States defined by values of a fixed set of variables
– Goal test defined by constraints on variable values

• Backtracking = depth-first search where successor states are 
generated by considering assignments to a single variable
– Variable ordering and value selection heuristics can help significantly
– Forward checking prevents assignments that guarantee later failure
– Constraint propagation (e.g., arc consistency) does additional work to 

constrain values and detect inconsistencies

• Complexity of CSPs
– NP-complete in general (exponential worst-case running time)
– Efficient solutions possible for special cases (e.g., tree-structured CSPs)

• Alternatives to backtracking search: local search


