
Constraint Satisfaction Problems
(Chapter 6)

What is search for?
• Assumptions: single agent,

deterministic, fully observable,
discrete environment

• Search for planning
– The path to the goal is the

important thing

– Paths have various costs, depths

• Search for assignment
– Assign values to variables while

respecting certain constraints

– The goal (complete, consistent
assignment) is the important thing

Constraint satisfaction problems (CSPs)

• Definition:

– State is defined by variables X
i
 with values from domain D

i

– Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

– Solution is a complete, consistent assignment

• How does this compare to the “generic” tree search
formulation?

– A more structured representation for states, expressed in a
formal representation language

– Allows useful general-purpose algorithms with more
power than standard search algorithms

Example: Map Coloring

• Variables: WA, NT, Q, NSW, V, SA, T

• Domains: {red, green, blue}

• Constraints: adjacent regions must have different colors
e.g., WA ≠ NT, or (WA, NT) in {(red, green), (red, blue),
(green, red), (green, blue), (blue, red), (blue, green)}

Example: Map Coloring

• Solutions are complete and consistent assignments, e.g.,
WA = red, NT = green, Q = red, NSW = green,
V = red, SA = blue, T = green

Example: n-queens problem

• Put n queens on an n × n board with no two queens on the
same row, column, or diagonal

Example: N-Queens

• Variables: X
ij

• Domains: {0, 1}

• Constraints:

Σ
i,j

 X
ij
 = N

(X
ij
, X

ik
) ∈ {(0, 0), (0, 1), (1, 0)}

(X
ij
, X

kj
) ∈ {(0, 0), (0, 1), (1, 0)}

(X
ij
, X

i+k, j+k
) ∈ {(0, 0), (0, 1), (1, 0)}

(X
ij
, X

i+k, j–k
) ∈ {(0, 0), (0, 1), (1, 0)}

X
ij

N-Queens: Alternative formulation

• Variables: Q
i

• Domains: {1, … , N}

• Constraints:

∀ i, j non-threatening (Q
i
, Q

j
)

Q
2

Q
1

Q
3

Q
4

Example: Cryptarithmetic

• Variables: T, W, O, F, U, R
 X

1
, X

2

• Domains: {0, 1, 2, …, 9}
• Constraints:

O + O = R + 10 * X
1

W + W + X
1
 = U + 10 * X

2

T + T + X
2
 = O + 10 * F

Alldiff(T, W, O, F, U, R)
T ≠ 0, F ≠ 0

X2 X1

Example: Sudoku

• Variables: X
ij

• Domains: {1, 2, …, 9}

• Constraints:

Alldiff(X
ij
 in the same unit) X

ij

Real-world CSPs

• Assignment problems
– e.g., who teaches what class

• Timetable problems
– e.g., which class is offered when and where?

• Transportation scheduling

• Factory scheduling

• More examples of CSPs: http://www.csplib.org/

Standard search formulation
(incremental)

• States:

– Variables and values assigned so far

• Initial state:

– The empty assignment

• Action:

– Choose any unassigned variable and assign to it a value
that does not violate any constraints

• Fail if no legal assignments

• Goal test:

– The current assignment is complete and satisfies all
constraints

Standard search formulation
(incremental)

• What is the depth of any solution (assuming n variables)?

n (this is good)

• Given that there are m possible values for any variable, how
many paths are there in the search tree?

n! · mn (this is bad)

• How can we reduce the branching factor?

Backtracking search

• In CSP’s, variable assignments are commutative

– For example, [WA = red then NT = green] is the same as
[NT = green then WA = red]

• We only need to consider assignments to a single variable at
each level (i.e., we fix the order of assignments)

– Then there are only mn leaves

• Depth-first search for CSPs with single-variable assignments is
called backtracking search

Example

Example

Example

Example

Backtracking search algorithm

• Making backtracking search efficient:
– Which variable should be assigned next?
– In what order should its values be tried?
– Can we detect inevitable failure early?

Which variable should be assigned
next?

• Most constrained variable:
– Choose the variable with the fewest legal values

– A.k.a. minimum remaining values (MRV) heuristic

Which variable should be assigned
next?

• Most constrained variable:
– Choose the variable with the fewest legal values

– A.k.a. minimum remaining values (MRV) heuristic

Which variable should be assigned
next?

• Most constraining variable:
– Choose the variable that imposes the most

constraints on the remaining variables

– Tie-breaker among most constrained variables

Which variable should be assigned
next?

• Most constraining variable:
– Choose the variable that imposes the most

constraints on the remaining variables

– Tie-breaker among most constrained variables

Given a variable, in which order should
its values be tried?

• Choose the least constraining value:
– The value that rules out the fewest values in the

remaining variables

Given a variable, in which order should
its values be tried?

• Choose the least constraining value:
– The value that rules out the fewest values in the

remaining variables
Which assignment

for Q should we
choose?

Early detection of failure

Apply inference to reduce the space of possible
assignments and detect failure early

Early detection of failure

Apply inference to reduce the space of possible
assignments and detect failure early

Early detection of failure:
Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

Early detection of failure:
Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

Early detection of failure:
Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

Early detection of failure:
Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

Early detection of failure:
Forward checking

• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

Constraint propagation

• Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for all
failures

• NT and SA cannot both be blue!

• Constraint propagation repeatedly enforces constraints locally

• Simplest form of propagation makes each pair of variables
consistent:
– X 🡪Y is consistent iff for every value of X there is some allowed value of Y

Arc consistency

Consistent!

• Simplest form of propagation makes each pair of variables
consistent:
– X 🡪Y is consistent iff for every value of X there is some allowed value of Y

Arc consistency

• Simplest form of propagation makes each pair of variables
consistent:
– X 🡪Y is consistent iff for every value of X there is some allowed value of Y

– When checking X 🡪Y, throw out any values of X for which there isn’t an
allowed value of Y

• If X loses a value, all pairs Z 🡪 X need to be rechecked

Arc consistency

Arc consistency

• Simplest form of propagation makes each pair of variables
consistent:
– X 🡪Y is consistent iff for every value of X there is some allowed value of Y

– When checking X 🡪Y, throw out any values of X for which there isn’t an
allowed value of Y

• If X loses a value, all pairs Z 🡪 X need to be rechecked

Arc consistency

• Simplest form of propagation makes each pair of variables
consistent:
– X 🡪Y is consistent iff for every value of X there is some allowed value of Y

– When checking X 🡪Y, throw out any values of X for which there isn’t an
allowed value of Y

• If X loses a value, all pairs Z 🡪 X need to be rechecked

• Simplest form of propagation makes each pair of variables
consistent:
– X 🡪Y is consistent iff for every value of X there is some allowed value of Y

– When checking X 🡪Y, throw out any values of X for which there isn’t an
allowed value of Y

Arc consistency

• Simplest form of propagation makes each pair of variables
consistent:
– X 🡪Y is consistent iff for every value of X there is some allowed value of Y

– When checking X 🡪Y, throw out any values of X for which there isn’t an
allowed value of Y

• Arc consistency detects failure earlier than forward checking

• Can be run before or after each assignment

Arc consistency

Arc consistency algorithm AC-3

Does arc consistency always detect the
lack of a solution?

• There exist stronger notions of consistency (path
consistency, k-consistency), but we won’t worry
about them

A
B

C
D

A

B

C

D

Tree-structured CSPs

• Certain kinds of CSPs can
be solved without
resorting to backtracking
search!

• Tree-structured CSP:
constraint graph does
not have any loops

Source: P. Abbeel, D. Klein, L. Zettlemoyer

Algorithm for tree-structured CSPs

• Choose one variable as root, order variables from root to leaves
such that every node's parent precedes it in the ordering

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs

Algorithm for tree-structured CSPs

• Choose one variable as root, order variables from root to leaves
such that every node's parent precedes it in the ordering

• Backward removal phase: check arc consistency starting from the
rightmost node and going backwards

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs

Algorithm for tree-structured CSPs

• Choose one variable as root, order variables from root to leaves
such that every node's parent precedes it in the ordering

• Backward removal phase: check arc consistency starting from the
rightmost node and going backwards

• Forward assignment phase: select an element from the domain of
each variable going left to right. We are guaranteed that there will
be a valid assignment because each arc is consistent

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs

Algorithm for tree-structured CSPs

• If n is the numebr of variables and m is the
domain size, what is the running time of this
algorithm?
– O(nm2): we have to check arc consistency once

for every node in the graph (every node has one
parent), which involves looking at pairs of domain
values

Nearly tree-structured CSPs

• Cutset conditioning: find a subset of variables whose
removal makes the graph a tree, instantiate that set in all
possible ways, prune the domains of the remaining
variables and try to solve the resulting tree-structured CSP

• Cutset size c gives runtime O(mc (n – c)m2)

Source: P. Abbeel, D. Klein, L. Zettlemoyer

Algorithm for tree-structured CSPs

• Running time is O(nm2)
(n is the number of variables, m is the domain size)

– We have to check arc consistency once for every node
in the graph (every node has one parent), which
involves looking at pairs of domain values

• What about backtracking search for general CSPs?
– Worst case O(mn)

• Can we do better?

Computational complexity of CSPs
• The satisfiability (SAT) problem:
– Given a Boolean formula, is there an assignment of the

variables that makes it evaluate to true?

• SAT is NP-complete
– NP: class of decision problems for which the “yes” answer

can be verified in polynomial time
– An NP-complete problem is in NP and every other problem

in NP can be efficiently reduced to it (Cook, 1971)
– Other NP-complete problems: graph coloring,

n-puzzle, generalized sudoku
– It is not known whether P = NP, i.e., no efficient algorithms

for solving SAT in general are known

Local search for CSPs
• Start with “complete” states, i.e., all variables assigned

• Allow states with unsatisfied constraints

• Attempt to improve states by reassigning variable values

• Hill-climbing search:
– In each iteration, randomly select any conflicted variable and choose

value that violates the fewest constraints

– I.e., attempt to greedily minimize total number of violated constraints

h = number of conflicts

Local search for CSPs
• Start with “complete” states, i.e., all variables assigned

• Allow states with unsatisfied constraints

• Attempt to improve states by reassigning variable values

• Hill-climbing search:
– In each iteration, randomly select any conflicted variable and choose

value that violates the fewest constraints

– I.e., attempt to greedily minimize total number of violated constraints

– Problem: local minima

h = 1

Local search for CSPs
• Start with “complete” states, i.e., all variables assigned

• Allow states with unsatisfied constraints

• Attempt to improve states by reassigning variable values

• Hill-climbing search:
– In each iteration, randomly select any conflicted variable and choose

value that violates the fewest constraints

– I.e., attempt to greedily minimize total number of violated constraints

– Problem: local minima

• For more on local search, see ch. 4

CSP in computer vision:
Line drawing interpretation

An example polyhedron:

Domains: +, –, →, ←

Variables: edges

David Waltz, 1975

Desired output:

CSP in computer vision:
Line drawing interpretation

Four vertex types:

Constraints imposed by each vertex type:

David Waltz, 1975

CSP in computer vision: 4D Cities

G. Schindler, F. Dellaert, and S.B. Kang, Inferring Temporal Order of Images From 3D Structure,
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

1. When was each photograph taken?
2. When did each building first appear?
3. When was each building removed?

Set of Photographs:
Set of Objects:

Buildings

http://www.cc.gatech.edu/~phlosoft/

CSP in computer vision: 4D Cities

• Goal: reorder images (columns) to have as few violations as possible

observed missing occluded

Columns: images
Rows: points

Violates constraints:

Satisfies constraints:

CSP in computer vision: 4D Cities
• Goal: reorder images (columns) to have as few violations as possible

• Local search: start with random ordering of columns, swap columns
or groups of columns to reduce the number of conflicts

• Can also reorder the rows to group together points that appear and
disappear at the same time – that gives you buildings

Summary

• CSPs are a special kind of search problem:
– States defined by values of a fixed set of variables
– Goal test defined by constraints on variable values

• Backtracking = depth-first search where successor states are
generated by considering assignments to a single variable
– Variable ordering and value selection heuristics can help significantly
– Forward checking prevents assignments that guarantee later failure
– Constraint propagation (e.g., arc consistency) does additional work to

constrain values and detect inconsistencies

• Complexity of CSPs
– NP-complete in general (exponential worst-case running time)
– Efficient solutions possible for special cases (e.g., tree-structured CSPs)

• Alternatives to backtracking search: local search

