Свойства радиоактивных элементов

Уран и торий – наиболее распространенные члены семейства актинидов, в которое входят также актиний, протактиний и еще двенадцать трансурановых элементов.

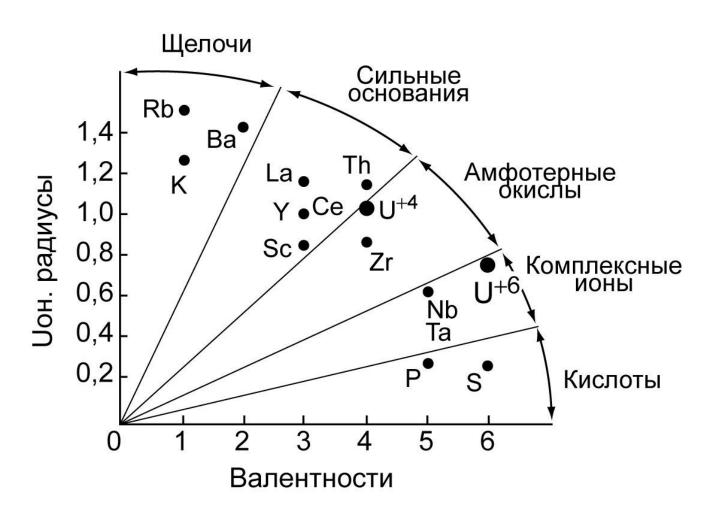
Это определяет значительную общность их химических свойств.

<u>Торий</u>

- **Торий (Th)** радиоактивный химический элемент, открыт в 1828 году И.Я. Берцелиусом. Назван в честь скандинавского бога грома Тора. Атомный номер 90, атомная масса 232,039.
- Атом тория представлен радиоактивными природными изотопами: 232 Th (230 Th (230 Th (ионий 10 Го, 12 1 $^{$
- Торий (5f6d27s2) радиоактивный fd -металл из группы Ac, в периодической системе расположен в 7-м периоде в III группе вместе с Ti, Zr, Hf и лантаноидами. При совместном рассмотрении с лантаноидами является гомологом Ce, по диагонали соседствует с La, Gd, Lu, по горизонтали с Ac, Ra, и Pa, U. Ко всем этим металлам он более или менее близок по химическим свойствам. По термическим свойствам ближе всего к Y и Lu, по энергии образования изолированных атомов к Zr, Hf, U. Сочетание высокой температуры плавления Th (металл) 1800°C и ThO₂ 3222°C, близкой к таковой Ti, и большой химической активности (близкой к активности Mg) отличает Th от U и большинства других металлов.

<u>Торий</u>

- По химическим свойствам он близок к РЗЭ, особенно к Се. Оба проявляют наиболее устойчивую в природе валентность (Th⁴⁺, Ce⁴⁺), но по сравнению с Се торий образует более устойчивые комплексные соединения.
- Тh окисляется на воздухе при температуре 20°C, реагирует с H₂O с образованием защитной пленки ThO,; при низких температурах взаимодействует с F ($Th\tilde{F}_{A}$), при нагревании (до \sim 45°С) - с СІ, Вг, І, S, при 600°С - с Н, (ТhH,), при 800°С образует нитриды, фосфиды, карбиды, силициды, а также интерметаллы и сплавы, пока не установленные а природе. Многие соли Тһ (галогениды, кроме F), сульфаты растворимы в H₂O и разбавленных кислотах. При 20°C хорошо растворим $Th(NO_2)_{_4}$ -190,7 г/100 г, практически не растворим Th F_4 - 0,2 г/100 г, а Th Cl_4 реагирует с Н₂О; не растворимы фосфаты, хроматы, молибдаты, оксикарбонат, оксалат, сульфит. Характерно образование многочисленных комплексных соединений Th⁴⁺, в том числе растворимых (карбонатные и другие комплексы).


<u>Торий</u>

- В химии известны различные состояния окисления Th; наиболее устойчив Th^{4+} : ([Rn]) ThO_2 , [Th(H₂O)]⁴⁺(aq), ThF_4 , ThCl₄) и т.д., ThF_3^{3-} , соли Th^{4+} , комплексы. Гораздо менее устойчивы Th^{3+} (ThI₃), и Th^{2+} (ThO, ThH_2).
- Стандартный потенциал восстановления E° (B): $Th^{4+} \rightarrow Th^{\circ} = -1,83$ (кислый раствор); $ThO_2 \rightarrow Th^{\circ} = -2,56$ (щелочной раствор) и окисления $Th(TB.) \rightarrow Th(OH)_4$ (TB.) = -2,48.
- Гидроксид (произведение растворимости 10^{-39} 10^{-42}) $Th(OH)_4$ начинает осаждаться из растворов при $pH \ge 3,5$; в присутствии карбонатов щелочных металлов и солей органических кислот образует растворимые комплексы (Титаева, 1991). При $pH \ge 3,5$ микроконцентрации тория образуют в растворе коллоидный $Th(OH)_4$. Процесс гидролиза Th^{4+} носит сложный характер, предполагает наличие, кроме $Th(OH)_4$, и других форм $Th(OH)_3^+$, $Th_2(OH)_2^{6-}$ и др.
- В порошке торий пироморфен, температура воспламенения 270°C, нижний предел взрываемости 75 г/м³.

Уран

- Открыт в 1789 году, но в чистом виде (металл серо-стального цвета) выделен только в 1841 году. Уран является самым тяжелым из относительно распространенных на Земле элементов. Представлен тремя радиоактивными природными изотопами ²³⁸U (99,275%), ²³⁵U (0,720%) и ²³⁴U (0,005%).
- Уран (5f36d17s2) является fd-металлом и принадлежит к 3-й группе периодической системы, подгруппе актиноидов: по группе наиболее близок к W, Mo, в какой-то мере к Ho, Nd, а по периоду к Th.
- Металлический U, как и Th, взаимодействует с O_2 с образованием защитной пленки оксидов, неравновесных при комнатных температурах (t) и давлении (P). Соединения UO часто содержат N и C, а UO_2 и UO_{2+x} окисляются при повышенных температурах и давлении до более высоких оксидов вплоть до UO_3 . Из многочисленных кислородных соединений наиболее устойчивыми считаются UO_2 (тип флюорита $U_{16}O_{36+m}$) и типа уранила $[UO_2]^{2+}$ или $U_{5n}O_{13n+3}$, которые относятся к двум разным гомологическим рядам оксидов U.
- Металлический U имеет сильную восстановительную способность, в порошке пироморфен, сильный комплексообразователь, образует фториды, нитриды, гидриды, сульфиды, а также сплавы с металлами. Характерная особенность химии U высокая летучесть его карбидов, галоидов, уранилов и др. У всех соединений U преобладают основные свойства. Металлический U реагирует с H_2O при t > 100°C, UH_3 , UC_2 и UC реагируют с холодной и горячей H_2O .

Кислотно-щелочные свойства

Уран

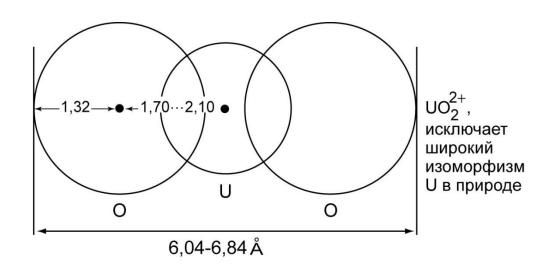
Химически U весьма активен, имеет переменную валентность - 3+, 4+, 5+, 6+; особенно устойчивое состояние в геохимии и минералогии имеют U⁶⁺ и U⁴⁺, которые ведут себя как разные элементы. В природе уран существует в двух степенях окисления: +4 и +6. В лабораторных условиях получены слабоустойчивые U (III) и U (V).

 U^{4+} в природе по свойствам наиболее близок к Th^{4+} , лантаноидам: TR^{4+} (Ce^{4+} , Pr, Tb), TR^{3+} (Nd, Ho), и к элементам иттриевой группы. U отличается от всех элементов очень крупным размером комплексного катиона (UO_2)²⁺, способным образовывать собственные урановые минералы. В этом отношении катион U^{6+} сходен с анионами W^{6+} (WO_4^{2-}) и особенно с Mo^{6+} (MoO_4^{2-}) устойчивостью анионных комплексов. Менее устойчивы другие состояния окисления U. Стандартные потенциалы восстановления E° (B)

Потенциал восстановления

	VI	V	IV		III	0
Кислый раствор	$UO_2^{2+} -0.16$	$UO_2^+ -0.38$	U ⁴⁺	<u>-0,52</u>	U^{3+} –1,6	$\underline{6} \overset{\text{l}}{\text{U}^0}$
Щелочной раствор	$UO_2^{2+}(OH)_2$ _	-0,3	UO_2	<u>-2,6</u>	$U(OH)_3 -2,1$	$\underline{0}$ U^0

Уран (IV) в своих соединениях присутствует в форме иона U^{4+} . По химическим свойствам он близок к Th (IV), Y (III) и тяжелым лантаноидам иттриевой группы. С химической точки зрения ион U^{4+} является слабым основанием. Он существует лишь в сильнокислых растворах и при понижении кислотности гидролизуется с образованием $U(OH)_4$. Гидроксид $U(OH)_4$ слабо растворим в воде, но хорошо растворяется в кислотах. Диоксид урана UO_2 практически не реагирует с водой до 300° С, нерастворим в HC1, но хорошо растворяется в HNO_3 и смесях кислот. Из соединений U (IV) наиболее растворимы в воде ${\rm UC1}_4$ и ${\rm U(SO}_4)_2$. Вследствие этого ${\rm U}$ (IV) устойчив в сильнокислых сульфатных, хлоридных и нитратных растворах. Силикаты ${\rm U}$ (IV) растворимы в сильнокислых средах. U (IV) склонен к образованию комплексных соединений, где имеет координационное число 8. Известны карбонатные, сульфатные, оксалатные и другие комплексы U⁴⁺. Большинство из них малоустойчиво, причем устойчивость падает с повышением температуры. Например, в карбонатных растворах U (IV) образует устойчивый в избытке карбоната комплекс $U(CO_3)_5^{6-}$


Отличительной особенностью, отличающей геохимию U^{4+} от лантаноидов, Ti^{2+} и других элементов-гидролизатов является высокая среди катионов степень подвижности в водных растворах.

Ионные радиусы

Элемент	Группа -	Валентность			
		3+	4+	5+	6+
Ac		<u> </u>	V ers a	Vi - i	
Th	актиноиды -	(1,08)	1,02	8,—6	_
Pa	актиноиды	(1,05)	0,98	0,80	_
U		1,03	0,97	0,87	0,80
La		1,14	-	8-0	10-91
Се		1,07	0,94	0 -3	7000
Pr		1,06	0,92	86 	5-3
Nd		1,04	_	s -	_
Sm		1,00	_	N=-0	_
Eu		0,98	-	У	_
Gd		0,97	_	()	_
Tb	_ лантаноиды _	0,93	0,81	8:	10-01
Dy		0,92	/ <u>(</u> 3	42 <u></u>	<u> </u>
Но		0,91	-	8 1 - 	TOTAL STATE OF THE
Er		0,89			
Tm		0,87	-	11-	_
Yb		0,86	_	19 	_
Lu		0,85	_	(===
Y	иттрий	0,92			

Уран (VI) — наиболее устойчивая степень окисления урана при свободном доступе воздуха. Валентность 6 является высокой даже для такого крупного катиона, как U⁶⁺. Он энергетически неустойчив и в водных растворах мгновенно гидролизуется с образованием комплексного двухвалентного катиона уранила UO²⁺. Например, UF₆ + 2H₂O → UO₂F₂ + 4HF.

Уранил-ион

По размерам уранил-ион превышает все известные в природе катионы и равен 6,04- 6,84 Å. В связи с этим он не может изоморфно замещать другие катионы в химических соединениях и в природе легко образует собственные минералы.

- Соединения U(VI) сравнительно хорошо растворимы и устойчивы в водных растворах. Наиболее растворимы уранил-нитраты. Хорошо растворимы сульфаты уранила и оксигалогениды (UO_2C1_2 и UO_2F_2). UF₆ и UC1₆ летучи, но в присутствии паров воды легко гидролизуются, переходя в оксигалогениды. Растворимы многие соли уранила с органическими кислотами. Типичными труднорастворимыми соединениями U (VI) являются фосфаты, арсенаты, ванадаты.
- U (VI) проявляет большую склонность к образованию комплексных соединений, которые играют важную роль в его геохимии. Во всех этих соединениях уран находится в форме уранил-иона, который имеет координационные числа 4 и 6. Комплексообразование U (VI) с Cl⁻, Br⁻ и NO³⁻ идет слабо.

- Наиболее важное значение в природных условиях имеют карбонатные, сульфатные, фторидные, фосфатные и гидроксильные комплексы.
- Аквагидроксокомплексы уранила образуются при ступенчатом замещении аквагрупп в акваионе уранила $[UO_2(H_2O)_6]^{2+}$ и имеют форму $[UO_2(OH)n(H_2O)_{6-n}]^{2-n}$ (n от 0 до 6) (Наумов, 1978).
- Карбонатные комплексы образуют семейство соединений, среди которых в водных растворах устойчивы лишь $[UO_2(CO_3)_3]^{4-}$ и $[UO_2(CO_3)_2(H_2O)_2]^{2-}$. Первый преобладает в растворе с избытком ионов CO_3^{2-} и при разбавлении переходит во второй. Следующей ступенью является образование слаборастворимого карбоната уранила UO_2CO_3 .
- Фторидные комплексы образуются лишь в средах с высокими концентрациями фтора.
- Сульфатные комплексные соединения уранила по строению подобны карбонатным, однако по прочности уступают не только карбонатным, но и фторидным. Они характерны лишь для кислой среды с рН 2—4.
- Очень важную группу комплексных соединений уранил-ион образует с органическими кислотами (щавелевой, уксусной, лимонной, группой гумусовых кислот и т. д.).

Ионы U^{6+} наиболее устойчивы в условиях окислительной обстановки и отличаются от U^{4+} более высоким значением ионной плотности; в водных растворах неустойчивы и гидролизуются с образованием UO_2^{2+} и $[UO_2(H_2O)_6]^+$, $[UO_2(H_2O)_5]^+$ и др., а при наличии CO_3^{2-} - $UO_2(CO_3)_2^{2-}$ и др. Гидроксилуранильный комплекс $UO_2(OH)_2$ устойчив при рН 4,5-7, осаждение карбонатных комплексов начинается при рН > 4,5, сульфатных — 4, гуминовых и фульвокомплексов - при рН ~ 7.

Важное химическое свойство U (особенно U^{6+}) - его сильная восстановительная способность, например для Fe^{3+} . Соединения U^{6+} , растворимы в H_2O , особенно уранил-нитраты, а также сульфаты и оксигалогениды (UO_2C1_2 и UO_2F_2); UF_6 и $UC1_6$ летучи, но легко гидролизуются, образуя оксигалогениды.

 UO_4 ·2H $_2$ О растворим в холодной (0,0006 г/100г) и горячей (0,008 г/100г) H $_2$ О; UF $_4$ (0,01 г/100г при 20°С), UF $_6$, UC1 $_4$ и UC1 $_5$ гигроскопичны и также реагируют с H $_2$ О при 20°С; хорошо растворим сульфат UO $_2$ SO $_4$ ·3H $_2$ O (151,4 г/100г при 20° и 237,8 при 100°С) и UO $_2$ F $_2$ (64,4 г/100г при 20° и 74 при 100°С). Главные нерастворимые соединения U $^{6+}$ - оксиды, фосфаты, арсенаты и ванадаты, которые известны в качестве экзогенных урановых минералов.

Характерна тенденция U⁶⁺ к образованию комплексов с карбонатными, сульфатными, фторидными, фосфатными ионами (но не Cl, Br , NO_3^-). Важное значение имеют устойчивые гидроксокомплексы, карбонатные и органические комплексы (с щавелевой, лимонной, гумусовыми и другими кислотами); сульфатные характерны только для кислой среды. Существенное значение в геохимии U имеют потенциалы окисления-восстановления в условиях различных рН с изменением направления реакции $2 Fe^{2+} + U^{6+} \leftrightarrow 2 Fe^{3+} + U^{4+}$ в кислой среде справа налево, а в щелочной - слева направо. Этим определяется разнообразие природных обстановок, приводящих к миграции и осаждению U на различных геохимических барьерах.

Радий (Ra)

Известны 4 природных изотопа радия: 223 Ra (T1/2=11,2 дня), 224 Ra (T1/2=3.6 дня), ²²⁶Ra (T1/2=1602 года), ²²⁸Ra (T1/2=8.8 года). Радий- щелочноземельный элемент, близкий по химическим свойствам к барию. В своих соединениях радий и барий изоструктурны. Радиус иона $Ra^{2+}=1,44$ Å, $Ba^{2+}=1,38$ Å Как и все щелочноземельные элементы, радий обладает единственной формой окисления +2, мало склонен к комплексообразованию, находится в водных растворах в форме иона Ra²⁺. Радий обладает более основными свойствами, чем барий. Растворимы в воде хлориды, бромиды, йодиды, сульфиды и нитраты радия. Слабо растворимы его сульфаты, карбонаты, фосфаты, хроматы, фториды и оксалаты. Как следует из этой характеристики его свойств, условия миграции радия отличаются от миграции урана, что нередко приводит к нарушению радиоактивного равновесия.

Радон (Rn)

- В природе известно 3 изотопа радона: 222 Rn (радон, $T_{1/2}$ =3,8 дня), 220 Rn (торон, $T_{1/2}$ =54,5 с.), 219 Rn (актинон, $T_{1/2}$ =3,9 с.), представляющие ряды распада 238 U, 232 Th и 235 U.
- Химические свойства радона определяются его положением в группе благородных газов Периодической системы. В соответствии с этим, для него характерна химическая инертность и валентность, равная 0. Он не вступает в реакцию с кислородом даже в искровом разряде и в присутствии катализаторов. В обычных условиях радон находится в молекулярном состоянии в виде Rn. Однако он может образовывать клатратные соединения с водой, фенолом, толуолом.
- При взаимодействии с газообразным фтором радон способен давать соединения типа RnF_4 , сокристаллизуясь при этом с ксеноном. Аналогично криптону и ксенону радон образует гексагидраты. $\mathrm{Rn}\cdot 6\mathrm{H}_2\mathrm{O}$ изоморфен с $\mathrm{H}_2\mathrm{S}\cdot 6\mathrm{H}_2\mathrm{O}$ и $\mathrm{SO}_2\cdot 6\mathrm{H}_2\mathrm{O}$.

Изотопы радона растворимы в воде и других жидкостях. Коэффициент растворимости в воде при 15 ⁰C варьирует от 0,25 до 0,30. Растворимости радона падает при повышении температуры. При кипячении он полностью удаляется из раствора.

Существенно выше его растворимость в органических жидкостях. Хорошая растворимость его в жирах обуславливает его концентрирование жировыми тканями. Радон сорбируется на поверхности твердых тел. Различного рода неогранические гели и органические коллоиды весьма прочно удерживают адсорбированный радон. Лучшим сорбентом является активированный уголь. Адсорбированный радон очень подвижен и легко перераспределяется в твердом теле от крайних молекулярных слоев в более глубокие зоны. Десорбция радона происходит при нагревании. С активированного угля он полностью десорбируется при 350-400 °C.

Выделения радона из одной фазы в другую называют эманированием. Коэффициент эманирования радона kRn равен отношению количеству радона, выделившегося из твердого или жидкого тела к его количеству, образовавшемуся в этом теле за тот же интервал времени. Он варьирует от доли процента до десятков процентов.

Полоний (Ро)

- В природе известен ряд изотопов полония: 210 Po (T1/2=138 дней), 214 Po (T1/2=1,6·10⁻⁴ c), 218 Po (T1/2=3,5 мин) ряд 238 U; 211 Po (T1/2=0,52c), 215 Po (T1/2=1,8·10⁻³ c) ряд 235 U; 212 Po (T1/2=2,9·10⁻⁷ c) и 216 Po (T1/2=0,15 c) ряд 232 Th. Из их характеристик видно, что практическое значение для геохимии может иметь лишь относительно долгоживущий 210 Po.
- Химические свойства полония определяются его положением в VIA группе Периодической системы. Он обладает конфигурацией электронных оболочек подобной селену и теллуру и по химическим свойствам близок к ним. В соответствии с принадлежностью к VIA группе он имеет несколько степеней окисления: -2, +2, +3, +4 и +6. Ро³⁺ имеет сходство с Ві. Наиболее устойчив в растворе Ро⁴⁺.

В природные растворы Ро поступает в ультрамикроконцентрациях. Он склонен к образованию псевдоколлоидов, которые возникают в. результате, адсорбции Ро на коллоидных частицах двуокиси кремния, органических веществ и т. д. Адсорбция носит ионообменный характер. При рН 1- 4 Ро находится в негидролизованных ионных формах; при рН 6 - 7 наблюдаются гидролиз и образование положительно заряженных коллоидных частиц; при рН 8-9 Ро находится в виде отрицательно заряженных коллоидных частиц гидроксидов. В сильнощелочной среде образуется анион РоО₃²-. Образование псевдоколлоидов происходит в растворах, где произведение растворимости никак не может быть достигнуто.

Для Ро характерна способность к комплексообразованию с различными анионами. Геохимическое значение имеет лишь наиболее долгоживущий изотоп - ²¹⁰Ро. Он образуется при распаде ²²²Rn. Обычным его спутником является более долгоживущий ²¹⁰ РЬ (22 года), из которого ²¹⁰Ро образуется по следующей цепочке:

²¹⁰РЬ $\beta \rightarrow {}^{210}$ Ві $\beta \rightarrow {}^{210}$ Ро $\alpha \rightarrow {}^{206}$ РЬ.

22 года 5 дней 138 дней

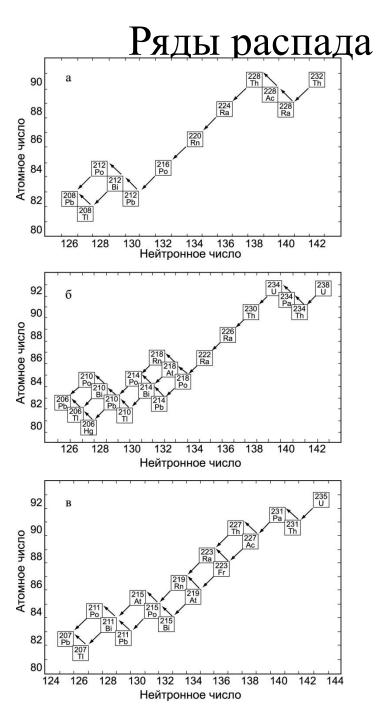
Протактиний (Ра)

- Атом Ра (5f56d17s2) состоит только из радиоактивных изотопов. В природе установлено лишь два изотопа: 231 Ра $(T_{1/2}, 3, 43-10^4)$ лет) ряд 235 U, 234 Ра (2 изомера $T_{1/2}, 6,75$ ч и 1,175 мин) ряд 238 U.
- Расположен в V группе периодической системы с Та, Pr, Dy и др. и геохимически близок к этим элементам, являясь химическим аналогом тантала. По некоторым свойствам близок также к Zr и Hf.
- Протактиний член семейства актиноидов и, соответственно, по химическим свойствам близок к U и Th. Как и U, взаимодействует с кислотами и водяным паром и не реагирует со щелочами. Относится к химически инертным элементам (как и Та), но на воздухе Pa^{4+} окисляется в Pa^{5+} с образованием защитной пленки. Соединения Pa слабо растворимы, легко гидролизуются и быстро адсорбируются коллоидными частицами других веществ, образуя псевдоколлоиды на поверхности твердых фаз. Наиболее типичные простые соединения разной валентности: Pa^{4+} PaO_2 , $[Pa(H_2O)]^{4+}$ (аq), PaF_4 , $PaC1_4$ и т.д.; Pa^{5+} Pa_2O_5 , PaO^{2+} (соединения), PaF_5 $PaC1_5$ и т.д, $[PaF_6]^7$, $[PaF,]^{3-}$; Pa^{3+} PaJ_3 .

Протактиний (Ра)

- Катионы протактиния легко образуют комплексные соединения, однако большинство из них так же неустойчиво к гидролизу, как и простые соединения. В водных растворах сравнительно устойчивы лишь фторидные, сульфатные и некоторые органические комплексные соединения.
- Металлический Ра при повышенной температуре образует гидрид (250 °C), карбид (1200 °C), оксид Pa_2O_5 (> 650 °C); известны соединения PaP, PaP_2 , Pa_3P_4 и сходные с As, Sb, S, Se, а также комплексы с NO_3 , SO_4 , C_2H_2 , CH_3 и т.д.

Гелий (Не)


- Гелий нерадиоактивный элемент. После водорода гелий самый легкий из всех газов. Относится к восьмой группе главной подгруппу периодической системы. Составляющие эту подгруппу элементы характеризуются очень низкой химической активностью, что дало основание называть их благородными или инертными газами. Гелий характеризуется химической инертностью и 0-й степенью окисления. Температура сжижения гелия -268,9°C, затвердевания -271,4°C при давлении 3,0 МПа.
- В природе известно 2 изотопа гелия ⁴Не и ³Не. ³Не рассматривается как газ, захваченный Землей в начальный момент ее формирования, ⁴Не как продукт термоядерного синтеза и радиоактивного распада тяжелых ядер.
- Гелий характеризуется хорошей растворимостью в магматических расплавах. Он способен легко проникать через кварцевое стекло. Это свойство используется в методике его определения. Изотоп ³Не единственное вещество пригодное для измерения температур ниже 1К.

Ряды распада

• В отличие от долгоживущих природных радионуклидов ²³⁸U, ²³⁵U и ²³²Th не сразу превращаются в стабильные дочерние продукты, а образуют длинные цепочки относительно короткоживущих промежуточных продуктов распада, которые называются рядами распада или радиоактивными семействами

Ряды распада

Конечными стабильными продуктами всех трех рядов являются изотопы свинца: ²⁰⁶PЬ, ²⁰⁷PЬ, ²⁰⁸PЬ, которые носят название радиогенных, в отличие от нерадиогенного изотопа ²⁰⁴PЬ. Радиоактивный распад - явление необратимое. Поэтому от начала каждого ряда к его концу в целом уменьшаются массовые числа и порядковые номера. Это обеспечивается лишь за счет альфа-распада, так как при бета-распаде порядковый номер увеличивается на единицу, а массовое число не меняется.

- **Альфа-распад** заключается в способности ядер превращаться в другие более легкие ядра путем испускания α-частиц ядер гелия (⁴₂He). Альфа-частицы относятся к группе тяжелых заряженных частиц. Энергия α-частиц, испускаемых в процессе альфа-распада находится в пределах 3,15(209Bi) 8,8 (212Po)Мэв
- **Бета**—распад это переход радиоактивных ядер в стабильное состояние путем превращения избыточных нейтронов в протон с испусканием электрона. При этом формируется β-излучение, представляющее собой поток электронов, образующий в процессе β распада.
- Помимо α-распада для очень тяжелых ядер возможен и иной тип превращений спонтанное деление на два сравнимых по массе осколка с испусканием нескольких нейтронов. Спонтанное деление наблюдается для ядер с массовым числом не менее 232 и имеет очень малую вероятность по сравнению с конкурирующим α-распадом. Это свойство тяжелых атомов используется в практике для изучения радионуклидов методом осколочной радиографии.
- **Гамма излучение** представляет собой коротковолновое электромагнитное излучение, возникающее при ядерных превращениях, изменении энергетического состояния ядер и аннигиляции частиц. Длина волны λ для γ-излучения меньше межатомного расстояния (10⁻¹⁰ м). Радионуклиды характеризуются строго определенными спектрами γ-излучения, которые используются для гамма-спектрометрического анализа.

n.		T.	Основные энергии излучения (МэВ) и их доля в общей интенсивности			
Радионуклид название	T _{1/2}	α	β	γ		
1	2	3	4	5	6	
		•	Ряд U ²³⁸			
²³⁸ U ₉₂	Уран I	4,468×10 ⁹ лет	4,15 (25%) 4,2 (75%)			
²³⁴ Th ₉₀	Уран X ₁	24,1 сут		0,103 (21%) 0,193 (79%)	0,063 (3,5%) 0,093 (4%)	
^{234m} Pa ₉₁	Уран X ₂	1,17 мин		2,29 (98%)	0,765 (0,3%) 1,001 (0,6%)	
²³⁴ Pa ₉₁	Уран Z	6,75 ч		1,13 (13%)	0,7 (24%) 0,9 (70%)	
$^{234}\mathrm{U}_{92}$	Уран II	2,45×10 ⁵ лет	4,72 (28%) 4,77 (72%)	-	0,053 (0,2%)	
²³⁰ Th ₉₀	Ионий	7,7×10 ⁴ лет	4,62 (24%) 4,68 (76%)	-	0,068 (0,6%) 0,142 (0,07%)	
²²⁶ Ra ₈₈	Радий	1602 года	4,60 (5%) 4,78 (95%)	-	0,186 (4%)	
$^{222}Rn_{86}$	Радон	3,823 сут	5,49 (100%)	-	0,510 (0,07%)	
²¹⁸ Po ₈₄	Радий А Радий В	3,05 мин 26,8 мин	6,0 (100%)	0,33 (~0,19%) 0,65 (50%) 0,71 (40%) 0,98 (6%)	0,295 (19%) 0,352 (36%)	
²¹⁸ At ₈₅	Астат	~ 2 сек	6,65 (6%) 6,70 (94%)	? (~0,1%)	-	
²¹⁴ Bi ₈₃	Радий С	19,9 мин	5,45 (0,012%) 5,51 (0,008%)	1,0 (23%) 1,151 (40%) 3,26 (19%)	0,609 (47%) 1,12 (17%) 1,764 (17%)	
²¹⁴ Po ₈₄	Радий С'	164 мкс	7,69 (100%)		0,799 (0,014%)	
²¹⁰ Tl ₈₁	Радий С''	1,3 мин	-	1,3 (25%) 1,9 (56%) 2,3 (19%)	0,296 (80%) 0,795 (100%) 1,31 (21%)	
²¹⁰ Pb ₈₂	Радий D	2 года	3,72 (0,00002%)	0,010 (85%) 0,061 (15%)	0,047 (4%)	
²¹⁰ Bi ₈₃	Радий Е	5,01 сут	4,65 (0,0007%) 4,69 (0,0005%)	1,161 (~100%)		
²¹⁰ Po ₈₄	Радий F	138,4 сут	5,305 (100%)	-	0,803 (0,0011%)	
²⁰⁶ Tl ₈₁	Радий Е''	4,19 мин	-	1,571 (100%)	-	

В каждом из природных рядов встречается определенная последовательность превращений, когда за одним альфараспадом следуют два бета-распада или наоборот.

Альфа-распад уменьшает заряд ядра на 2 единицы, а два бетараспада увеличивают его также на 2 единицы, то есть возвращают к прежнему значению. В результате появляется новый изотоп одного и того же элемента, который на 4 атомных единицы массы меньше первичного (за счет альфараспада). Примером могут служить группы изотопов в ряду урана-238: ²³⁸U и ²³⁴U, ²³⁴Th и ²³⁰Th, ²¹⁸Pb, ²¹⁴Pb, ²¹⁰Pb и ²⁰⁶Pb и др. Аналогичные группы имеют место и в других рядах. Альфа- частицы являются ядрами ⁴Не. Поэтому при их стабилизации после присоединения двух электронов появляются атомы ⁴He. В ряду урана-238 образуется 8 атомов ⁴He, в ряду урана-235 - 7 атомов, а в ряду тория-232 -6 атомов. Таким образом, радиоактивный распад природных рядов ведет к появлению ⁴He.

Радиоактивное равновесие в рядах распада

Члены каждого ряда связаны друг с другом последовательными необратимыми альфа- и бета- превращениями. Если система, в которой находятся радионуклиды того или иного ряда, закрыта, то есть не происходит выноса или поступления отдельных ее членов относительно других, то со временем в ряду наступает радиоактивное равновесие. Так как периоды полураспада материнских радионуклидов — родоначальников рядов — много больше периодов полураспада дочерних (промежуточных) членов, то условие равновесия выражается соотношениями:

$$\begin{split} N_1/T_1 &= N_2/T_2 = \dots N_i/T_i = A \ или \\ N_1/\lambda_1 &= N_2/\lambda_2 \dots = N_i/\lambda_i = A; \\ N_1/\lambda_1/N_2/\lambda_2 &= 1, \end{split}$$

где N — число атомов, λ — константа распада, T — период полураспада, A — активность, Eк.

Это соотношение определяет так называемое «вековое» равновесие (Баранов, 1956). Скорость установления радиоактивного равновесия в ряду распада зависит от периода полураспада наиболее долгоживущего члена ряда, а для пары взаимосвязанных радионуклидов определяется периодом полураспада дочернего – ТД. С точностью до 0.8% равновесие наступает через $7T_{II}$, а с точностью до 0.1% — через $10T_{\rm II}$. Так, для ряда U- $2\overline{3}8$ наиболее долгоживущим промежуточным членом ряда является ²³⁴U с периодом полураспада 248 тыс. лет. Поэтому радиоактивное равновесие в целом по ряду наступит лишь через 1,7 млн лет (с точностью до 1%). В ряду Th-232, где наиболее долгоживущим является ²²⁸Ra с периодом полураспада, равным 5,75 года, равновесие будет наблюдаться всего через 40 лет (с точностью до 1%).

- В зависимости от соотношения периодов полураспада материнского ТМ и дочернего ТД может встречаться несколько вариантов изменения их активностей (Титаева, 2000):
- 1. ТМ < ТД. Материнский радионуклид распадается быстрее, чем дочерний. В этом случае равновесие наступить не может, если материнский радионуклид изолирован и не подкреплен предыдущим, более долгоживущим членом ряда. Активность материнского радионуклида при этом уменьшается в соответствии с уравнением N = N0exp(-At). Примером может служить пара ²³⁴Th (24 дня) ²³⁴U (244 тыс. лет).
- 2. ТМ > ТД. Если период полураспада материнского радионуклида соизмерим или несколько больше периода полураспада дочернего, то с течением времени активность дочернего возрастет до состояния подвижного равновесия с материнским. Затем их активности, равные между собой, будут уменьшаться в соответствии с ТМ. Примером может служить пара ²²⁸Ra (5,75 года) ²²⁸Th (1,9 года).
- 3. ТМ >> ТД. Чаще используются пары, где период полураспада материнского (например, родоначальника ряда) много больше дочернего радионуклида. В этом случае через 10ТД (с точностью до 0,1%) наступает вековое равновесие, описываемое приведенным выше уравнением. В природных системах редко встречаются случаи, когда присутствует только материнский радионуклид, а дочерние полностью отсутствуют. Обычно некоторое их количество находится в системе вместе с материнскими атомами.

Радиоактивное равновесие в данном ряду распада считается нарушенным, если соотношение между членами ряда не удовлетворяет приведенному выше выражению, а отношения активностей отдельных радионуклидов не соответствует единице (Титаева, 2005).

В открытой системе радиоактивное равновесие может быть нарушено в результате перемещения атомов одних членов ряда относительно других из системы либо в систему. При этом перемещение атомов должно происходить на расстояние, превышающее размер системы, и за время, более короткое, чем то, которое необходимо для восстановления равновесия. Нарушение радиоактивного равновесия является результатом геохимической дифференциации членов одного ряда, где одни из них оказываются в данных условиях более подвижными, чем другие. Важнейшими процессами, приводящими к такой дифференциации, являются процессы растворения и осаждения, которые локализуются на границе раздела жидкой и твердой фаз. Однако подобные процессы нередко могут возникать также и на границах газ/твердое вещество и газ/жидкость.

- Существуют три основные группы факторов, приводящие к нарушению радиоактивного равновесия в рядах распада (Титаева, 2005):
- различие химических свойств элементов, изотопами которых являются исследуемые радионуклиды,
- свойства элементов, связанные с радиоактивностью
- физико-химические условия окружающей среды.
- Исключительно химическими свойствами членов рядов распада обусловлено геохимическое поведение лишь наиболее долгоживущих и распространенных в природе родоначальников рядов: ²³⁸U и ²³²Th, концентрации которых сопоставимы с концентрациями большинства микроэлементов. Геохимия остальных членов рядов при равных физико-химических условиях среды обусловлена как их химическими особенностями, так и факторами, связанными с радиоактивностью: а) происхождением из того или иного родоначальника ряда; б) скоростью радиоактивного распада (или накопления); в) энергией радиоактивной отдачи; г) концентрацией и зависимостью от присутствия носителей.
- Обычно нарушения радиоактивного равновесия наблюдаются на границе раздела двух фаз, т.е. на границе двух систем. В природе часто такие условия создаются при взаимодействии природных вод, циркулирующих по порам и трещинам, с горными породами, рыхлыми осадками или почвами. В зависимости от состава растворенных в воде ионов, величин рН и Еh одни дочерние нуклиды могут оказаться более растворимы, чем другие. В результате селективного выщелачивания произойдет дифференциация радионуклидов, принадлежащих к одному ряду распада. Жидкая фаза окажется обогащенной наиболее растворимыми членами ряда; твердая фаза, напротив, будет испытывать их дефицит. В результате и горные породы, и циркулирующие по ним воды будут характеризоваться нарушением радиоактивного равновесия в рядах распада. Процессы селективного осаждения радионуклидов из природных вод и последующей их адсорбции на твердой фазе также являются механизмами, способствующими нарушению радиоактивного равновесия среди членов одного ряда.

Рассмотрим некоторые примеры (Титаева, 2000).

- 1) При выветривании горных пород природные воды будут окислять атомы урана, находящиеся на поверхности минеральных зерен, и переводить их в раствор. При этом дочерние атомы изотопов тория (²³⁴Th и ²³⁰Th), обладающие существенно меньшей растворимостью, в значительной степени останутся на месте. В результате горные породы в зоне выветривания и особенно почвы приобретают неравновесные отношения активностей с избытком ²³⁰Th (²³⁰Th/²³⁴U ≥ 2,0), а воды, напротив, характеризуются относительным дефицитом ²³⁰Th (²³⁰Th/²³⁴U ≤ 0,5).
- 2) В океанической воде ²³⁸U и ²³⁴U находятся в растворе в составе устойчивых карбонатных комплексов, а образующийся из ²³⁴U дочерний радионуклид ²³⁰Th будет адсорбироваться на взвешенных частичках или соосаждаться с гидроксидами железа, обогащая таким образом донные осадки. В результате радиоактивное равновесие оказывается нарушенным и в воде, и в осадках.
- 3) Примером иной геохимической обстановки может служить взаимодействие подземных вод с водовмещающими породами в зоне контакта с углеводородными залежами, создающими резко восстановительные условия. В этих условиях окисления атомов урана не происходит и переход их в воду ничтожно мал. В то же время дочерний ²²⁶Ra легко выщелачивается из горных пород и весьма устойчив в растворе в хлоридных бессульфатных барийсодержащих рассолах. В итоге радиоактивное равновесие на контакте порода вода резко нарушается, а отношение активностей ²²⁶Ra/²³⁸U в рассолах может достигать 10²-10⁴.

• В практике геологоразведочных работ особое значение имеет радиоактивное равновесие между ураном и радием и ураном, торием и конечными продуктами распада — изотопами свинца.

$$K_{pp} = 2.94 \cdot 10^8 C_{Ra} / C_{U}$$