Находится в меню Сервис, вызывается опцией

«Поиск решения».

Оптимизатор Solver (встроен в Microsoft Excel)

В появившемся окошке поочередно указывайте ячейку или (при одинаковых знаках ≥ (или ≤, или =) для группы ограничений) – указывайте диапазон целиком).

После ввода всех ограничений нажмите ОК для возврата в основное окно Solver

Последовательно введите все ограничения (кнопка «Добавить»)

В Solver предусмотрены различные алгоритмы оптимизации. Вы их можете просмотреть и выбрать, если нажмете

Установить целевую ячейку: 🛛 🕵	<u>В</u> ыполнить
Равной: С максимальному значению С значению: О	Закрыть
Измендя ячейки:	
Ограничения:	I Параметры
До <u>б</u> авить	
Изменить	Восс <u>т</u> ановит
<u>У</u> далить	Справка

Этот переключатель устанавливайте в положение ЛИНЕЙНАЯ, если все ограничения и критерий – *линейные* функции искомых переменных (так будет в транспортной задаче)

Параметры поиска решения

Состав и форму ограничений можно изменять и удалять

Выполнение:

- 1. Если решение существует (т.е. Если система ограничений непротиворечива), то Solver изменит значения указанных Вами ячеек так, чтобы достичь экстремума критерия.
- 2. В противном случае появится сообщение:

езультаты поиска решения	? :
Поиск не может найти подходящего решения.	<u>Т</u> ип отчета
 Сохранить найденное решение Восстановить исходные значения 	Результаты Устойчивость Пределы
	сценарий Справка

Пример

Требуется найти значения переменных x₁ и x₂, доставляющих *максимум* критерию

Решение с помощью Solver MS Excel

1. Размещаем исходные данные (параметры) (не скупитесь на комментарии!):

2. Отводим диапазон под исходные данные, присваиваем им любые исходные значения, указываем область их определения (здесь: ≥ 0)

Решение с помощью Solver MS Excel

3. Вводим формулу критерия (со ссылками на исходные данные):

Указание, какой экстремум будем находить (в примере – максимум), нужно будет дать в окне Solver'а

Решение с помощью Solver MS Excel

4. Вводим формулы ограничений (со ссылками на исходные данные):

5. Вызываем Solver (меню Сервис – Поиск решения), вводим нужные данные в окошки. Поскольку и критерий, и ограничения ЛИНЕЙНЫЕ, в опции «Параметры» включите «Линейная модель»

0

В данном примере решение отсутствует (система ограничений несовместна):

При других исходных данных (D=10,а не 40) решение будет найдено: /

Отчет о результатах оптимизации (Solver выводит его на отдельном листе):

Microsoft Excel 9.0 Отчет по результатам Рабочий лист: [Книга1]Лист1 Отчет создан: 16.02.2003 22:53:10

Термин «связанное ограничение» означает превращение его из неравенства в строгое равенство

целевая яч	ейка	(Максимум	1)					
Ячейка		Имя	Исходно	Результат	Г			
\$D\$6	Крит	ерий a22=	0	1	00			
				H	Неис	спользован	ный	
1зменяемь	е яч	ейки		3	апа	с ресурсов		
Ячейка		Имя	Исходно	Результат	г		\mathbf{X}	
\$C\$9	x1		0		0		X	
\$C\$10	x2		0		10			
) граничени	19							
Ячейка		Имя	Значение	ф ормула		Стату 🖌 І	разни	ца
\$B\$13	x2		30	\$B\$13<=\$F\$1	13 🤇	связанное		0
\$B\$14	x2		10	\$B\$14>=\$F\$	14 (связанное		0
\$C\$9	x1		0	\$C\$9>=\$E\$9	(связанное		0
\$C\$10	x2		10	\$C\$10>=\$E\$	10 H	не связан.		10