Реляционная алгебра

Реляционная алгебра – замкнутая система операций над отношениями в реляционной модели данных.

Группы операций

- 1. базовые теоретико-множественные;
- 2. специальные реляционные.

- 1. унарные;
- 2. бинарные.

Реляционный оператор *f* выглядит как функция с реляционными отношениями в качестве аргументов:

$$R = f(R_1, R_2, \dots, R_n).$$

$$R = f[f_1(R_{11}, R_{12}, ...), f_2(R_{21}, R_{22}, ...), ...]$$

Совместимость отношений по типу

Два отношения являются совместимыми по типу, если они имеют идентичные заголовки:

- множества имен атрибутов этих отношений совпадают;
- атрибуты с одинаковыми именами определены на одном и том же домене.

Совместимость отношений по типу

Для приведения отношений к одному типу следует использовать операцию переименования:

рНовоеОтношение(НовАтр1,...,НовАтрN)(СтароеОтношение)

- <ucxодное отношение> RENAME <cтарое имя атрибута> AS <новое имя атрибута>
- 1) рПоставщики (КодП, Имя, Город, Рейтинг)(S)
- 2) Поставщики RENAME Город_П AS Город_размещения Поставщика

Операция множественного переименования

```
      <отн.>
      RENAME < ст.имя</td>
      aтр.1> AS < нов.имя</td>

      aтр.1>,< ст.имя aтр2> AS < нов.имя aтр.2>, ..., < ст.имя</td>

      aтрN> AS < нов.имя aтр.N>
```

Теоретикомножественные операции

Результатом операции объединения двух совместимых по типу отношений R1 и R2, является отношение с тем же заголовком, что и в R1 и R2, и телом, состоящим из кортежей, принадлежащих R1 или R2 или обоим отношениям.

B SQL это операция UNION: R1 UNION R2

R1

ID	Name	City	Weight	Price
P1	Болт	Париж	15	40
P2	Гайка	Челябинск	20	24

R2

ID	Name	City	Weight	Price
P1	Болт	Париж	15	40
P3	Шуруп	Одесса	14	33

R1 U R2

PID	Name	City	Weight	Price
P1	Болт	Париж	15	40
P2	Гайка	Челябинск	20	24
P3	Шуруп	Одесса	14	33

Результатом операции пересечения двух совместимых по типу отношений R1 и R2 является отношение с тем же заголовком, что и в R1 и R2, и телом, состоящим из кортежей, принадлежащих обоим отношениям R1 и R2.

B SQL это операция INTERSECT: R1 INTERSECT R2

R1

ID	Name	City	Weight	Price
P1	Болт	Париж	15	40
P2	Гайка	Челябинск	20	24

R2

ID	Name	City	Weight	Price
P1	Болт	Париж	15	40
P3	Шуруп	Одесса	14	33

R1 ∩ **R2**

PID	Name	City	Weight	Price
P1	Болт	Париж	15	40

Результатом операции вычитания двух совместимых по типу отношений R1 и R2 является отношение с тем же заголовком, что и в R1 и R2, и телом, состоящим из кортежей, принадлежащих отношению R1 и не принадлежащим отношению R2.

> B SQL это операция EXCEPT: R1 EXCEPT R2

R1

ID	Name	City	Weight	Price
P1	Болт	Париж	15	40
P2	Гайка	Челябинск	20	24

R2

ID	Name	City	Weight	Price
P1	Болт	Париж	15	40
P3	Шуруп	Одесса	14	33

R1 - R2

ID	Name	City	Weight	Price
P2	Гайка	Челябинск	20	24

R2 –

ID	Name	City	Weight	Price
P3	Шуруп	Одесса	14	33

Прямое произведение отношения R1 степени a1 и отношения R2 степени а2, которые не имеют одинаковых имен атрибутов – это такое отношение R степени (а1+а2), заголовок которого представляет собой сцепление заголовков отношений R1 и R2, а тело имеет всевозможные соединения кортежей отношений R1 и R2, такие, что первые а1 элементов кортежей принадлежат множеству R1, а последние а2 элементов множеству R2.

B SQL это операция TIMES: R1 TIMES R2

R1

Α	В
a1	b1
a2	b2

R2

С	D	Е
c1	d1	e1
c2	d2	e2
сЗ	d3	еЗ

R1 × R2

Α	В	С	D	Е
a1	b1	c1	d1	e1
a1	b1	c2	d2	e2
a1	b1	сЗ	d3	еЗ
a2	b2	c1	d1	e1
a2	b2	c2	d2	e2
a2	b2	сЗ	d3	e3

Специальные реляционные операции

Операция	Обозначение греч. алф.	Обозначение лат. алф.
Выборка (ограничение)	$\sigma_{ m condition}(R)$	R WHERE condition
Проекция		R[Attr1,, AttrN]
Естественное соединение	R1 ⋈ R2	R1 JOIN R2
О-соединение	R1.Attr1 O R2.Attr2	<u>-</u>
Деление	R1 ÷ R2	R1 DIVIDE BY R2
Группировка		-
Сортировка		-
Удаление дубликатов		-

Выборка

Результатом Θ -выборки из отношения R с помощью операции сравнения Θ над атрибутами A1 и A2 является отношение $\sigma_{A1\Theta A2}(R)$, имеющее тот же заголовок, что и $R\sigma_{A1\Theta A2}(R)$, и тело, состоящее из тех кортежей R для которых вычисление выражения A1 Θ A2 дает истину.

R

PID	Name	City	Weight	Price
P1	Болт	Париж	15	40
P2	Гайка	Челябинск	20	24
P3	Шуруп	Одесса	14	33

PID	Name	City	Weight	Price
P1	Болт	Париж	15	40
P3	Шуруп	Одесса	14	33

 $\sigma_{\text{Price}>30}$ (R)

Выборка по составному условию

- $\sigma_{C1 \text{ and } C2}(R) \equiv \sigma_{C1}(R) \cap \sigma_{C2}(R)$
- $\sigma_{C1 \text{ or } C2}(R) \equiv \sigma_{C1}(R) \cup \sigma_{C2}(R)$
- $\sigma_{\text{not C}}(R) \equiv R \sigma_{\text{C}}(R)$

Проекция

• Результатом проекции отношения R по атрибутам $A_1, ..., A_N$ является отношение $\pi_{A1}, ..., A_N$ (R), имеющее заголовок, состоящий из атрибутов $A_1, ..., A_N$, и тело, которое состоит из всех кортежей R, получаемых отбрасыванием атрибутов, не входящих в список $A_1, ..., A_N$.

R

PID	Name	City	Weight	Price
P1	Болт	Париж	15	40
P2	Гайка	Челябинск	20	24
P3	Болт	Одесса	15	33

TT Name, Weight (R)

Name	Weight
Гайка	20
Болт	15

Соединение

- □ общая операция соединения;
- □ О-соединение;
- □ экви-соединение;
- □ естественное соединение.

Общая операция соединения

Соединением отношений *A* и *B* по условию *C* называется отношение

(A TIMES B) WHERE C, где:

С – логическое выражение, в которое могут входить атрибуты отношений А и В и (или) скалярные выражения.

О-соединение

Пусть отношение A содержит атрибут X, отношение B – атрибут Y, а Θ – один из операторов сравнения. Тогда Θ – соединением отношения A по атрибуту X с отношением B по атрибуту Y называют отношение:

(A TIMES B) WHERE X O Y

A C X 5 2

D	Ш	Y
2	ര	1
4	6	5
2	1	7

(A TIMES B) WHERE X O Y

C	X	ם	ш	Y
5	2	2	3	1
3	4	2	3	1

Экви-соединение

Это наиболее частный случай Осоединения, когда О – есть равенство.

A		
O	X	
5	2	
3	4	

D	ш	Y
2	3	4
4	6	2
2	1	2
1	3	1

(A TIMES B) WHERE X O Y

C	X	D	ш	Y
5	2	4	6	2
5	2	2	1	2
3	4	2	3	4

Естественное соединение

Результатом естественного соединения отношений R1(A,B) и R2(B,C) по общему атрибуту В является отношение R1 № R2 с заголовком из атрибутов А, В, С, и телом, состоящим из соединенных кортежей, которые имеют совпадающие значения в общем атрибуте.

R1 \bowtie $R2 \equiv \pi A,B,C (\sigma R1.B=R2.B(R1\times R2))$

R1 A B a1 b1 a2 b2

В	C
b1	c1
b2	c2
b3	сЗ
h1	c4

R2

R1™R2

Α	В	C
a1	b1	c1
a1	b1	c4
a2	b2	c2

Деление

Пусть имеются отношения A(X, Y) и B (Y), где атрибуты Y определены на одном и том же домене.

Тогда результатом деления A ÷ В будет отношение с заголовком из атрибута X и телом, в которое входят кортежи <x:X> такие, что существует кортеж <x:X, y:Y>, который принадлежит отношению A для всех кортежей <y:Y> из отношения B.

Деление

SP			P		
SID	PID	÷	PID	=	SID
S1	P1		P1		S1
S1	P2				S2
S1	P3				
S1	P4				
S1	P5				
S2	P1				
S2	P2				
S3	P2				
S4	P2				
S4	P4				
S5	P5				

SP			P		
SID	PID	÷	PID	=	SID
S1	P1		P2		S1
S1	P2		P4		S4
S1	P3				
S1	P4				
S1	P5				
S2	P1				
S2	P2				
S3	P2				
S4	P2				
S4	P4				
S5	P5				

Деление

SP			P		
SID	PID	÷	PID	=	SID
S1	P1		P1		S1
S1	P2		P2		
S1	P3		P3		
S1	P4		P4		
S1	P5		P5		
S2	P1				
S2	P2				
S3	P2				
S4	P2				
S4	P4				
S5	P5				

SID PID ÷ SID = PID
S1 P1 S1 P1
S1 P2 P2
S1 P3 P3
S1 P4 P4
S1 P5 P5
S2 P1
S2 P2
S3 P2
S4 P2
S4 P4
S5 P5

Примитивные и выражаемые операции

Примитивные: выборка, проекция, произведение, объединение, вычитание, переименование.

Выражаемые операции:

```
⊔ пересечение
R1 \cap R2 \equiv R1 - (R1 - R2).
□ О-соединение
R1 \bowtie R2 \equiv \sigma_C (R1 \times R2).
□ естественное соединение
R1 \bowtie R2 \equiv \pi_{l} (\sigma_{c}(R1 \times R2)),
где L – список атрибутов из R1 и атрибутов из R2,
отсутствующих в R1;
C – условие вида R1.Attr1=R2.Attr1 and ... and
R1.AttrN=R2.AttrN (Attr1, ..., AttrN – атрибуты соединения).
```