«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ ИМЕНИ К.Г. РАЗУМОВСКОГО (ПЕРВЫЙ КАЗАЧИЙ УНИВЕРСИТЕТ)»

Оценка возможности повышения эффективности процесса гидрирования бутилен- бутадиеновой фракции. Производительность 110000т/ год

Выполнила студентка группы 3Х-412 Рыбцова В.О. Проверила руководитель проекта Шепелева Г.Ф.

Цель дипломного проекта

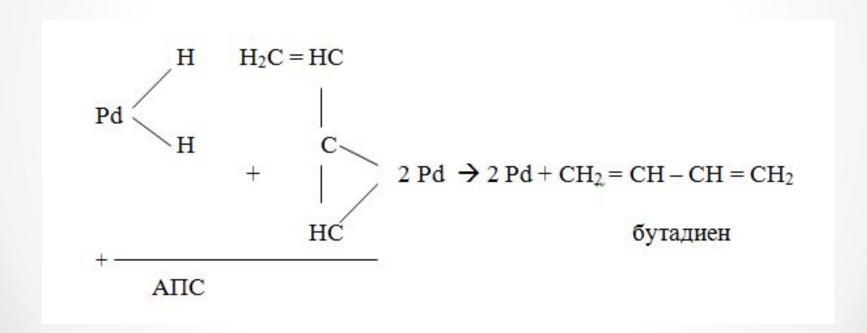
Оценка возможности повышения эффективности процесса гидрирования бутилен-бутадиеновой фракции.

Задачи проекта:

- Изложить теоретические основы процесса гидрирования;
- Изложить требования, предъявляемые к сырью и готовой продукции;
- Составить технологическую схему установки гидрирования бутилен-бутадиеновой фракции;
- Провести обвязку основного оборудования приборами КИП;
- Выполнить чертежи реактора гидрирования и кожухотрубного теплообменника.

Преимущества катализатора РК-012:

- Потери бутадиен 1,3 снизились до 1,2-2,4%.
- Степень гидрирования (по одной ступени) ацетиленовых углеводородов выросла от 45—50 до 70—75 мас.%
- Высокая механическая прочность катализатора обеспечила стабильность технологических показателей процесса гидрирования в течение 13000 ч пробега.
- Уменьшение концентрации Pd в исходном катализаторе


Характеристика исходного сырья

Наименование	Государственный или	Показатели по стандарту,	Регламентируе-
сырья	отраслевой стандарт,	обязательные для	мые показатели
Сырыл	•		MBIC HORASATCHII
	регламент	проверки	
ББФ	ТУ 38.402-62-123-90	Массовая доля	
		углеводородов	
		C_4 для всех марок, $\%$, не менее	98
		Массовая доля Бутадиен-1,3, % , не	
		менее	
		Марки гидрированная и	
		негидрированная «А»	40
		Массовая доля углеводородов до С3	
		включительно	
		Марка гидрированная	1,0
		негидрированная «А»	0,7
		Массовая доля ацетиленовых	
		соединений, %, не более	
		Марки: гидрированная и	
		негидрированная «А»	2,0
			- / ©

Характеристика исходного сырья

Газ водород- содержащий	ТУ 38.301-19-135-200 1	Компонентный состав, % объемный: содержание : водорода, не менее сероводорода, не более	65 0,002
		кислорода, не более углекислого газа, не более окиси углерода, не более	0,4 0,5 0,2

Химизм процесса

TIOPMDI TEXTIONOTH TECKO	то режима процесси
Наименование процессов, оборудования и	Допустимые пределы
показателей режима	технологических параметров

18 °C

18 °C

 $0.6 \,\mathrm{M\Pi a} \,(6.0 \,\mathrm{krc/cm^2})$

32 °C

350 °C

6 часов

 $0,12 \,\mathrm{M}\Pi \mathrm{a} \,(1,2 \,\mathrm{krc/cm^2})$

(0,5-5,0) % oб.

До прекращения повышения t в

реакторе

(250 - 350) °C

от 300 до 25 °C

Температура ББФ на выходе из холодильника № 1,2

Температура ББФ на выходе из холодильников 3,4

Давление в системе гидрирования, не более

1 Активация катализатора - удаление влаги

2 Окислительная регенерация катализатора

содержание кислорода в азотно-воздушной смеси

3 Восстановление палладиевого катализатора ВСГ

продолжительность операции, не менее

Температура гидрирования, не более

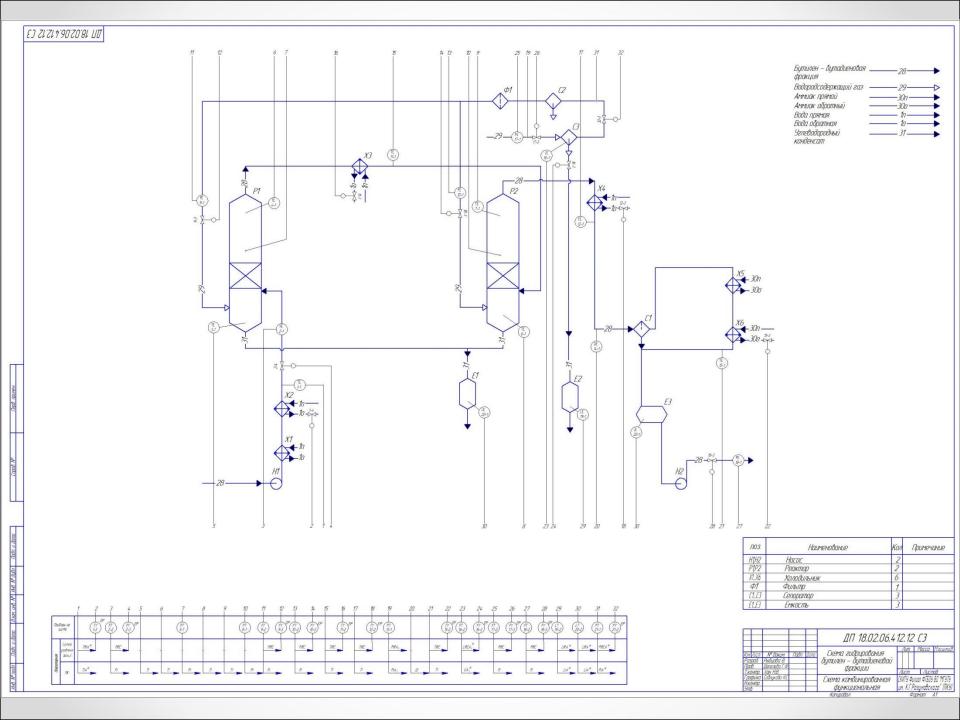
Периодические процессы:

продолжительность операции

Температура регенерации

падение температуры

температура, не более


давление, не более

не более

не более

Реактор № 1,2

Реактор 1,2

Аналитический контроль процесса

Наименование	Контролируемый	Частота и способ	Норма и	Требуемая
стадий процесса,	параметр	контроля	технически	точность
место измерения			й	измерения
параметров			показатель	параметро
				В
ББФ после 1-й	Бутадиен % масс.	3 раза в сутки	факультати	1,0
ступени Реактор		хроматографичес	вно	
1		КИ		
ББФ	Бутадиен, % масс.	6 раз в сутки	факультати	1,0
после 2-й		хроматографически	вно	
ступени				
Реактор 2	Ацетиленовые, %	- // -	0,02	1,0
	масс., не более			

ББФ после	Влага, % масс.	1 раз в сутки	0,05	1,0
холодильника	не более	нитридом магния		
		аналитически		
Водородосоде	Водород, %	1 раз в сутки	65	1,0
ржащий газ	об., не менее	хроматографически		
ИЗ		- // -		1,0
трубопровода	СО, % об.,	прибор ОРСА		1,0
после	не более	поглощением	0,2	1,0
сепаратора	CO _{2′} % об.,	- // -		
	не более		0,5	
	O ₂ , % об.,		0,4	
	не более			

материальный баланс процесса гидрирования выч					
Приход			Расход		
Наименование	кг/ч	т/год	Наименование	кг/ч	т/год
Бутилен-	12556,8	110000	Прогидрирова	13226,4	115863,26
бутадиеновая			нная бутилен-		

44591,98

40366,1

150366,1

фракция

•Бутадиен 1,3

Водород -

Итого

содержащий газ

5090,4

17164,8

4608

бутадиеновая

Углеводородны

43677,36

34502,84

150366,1

4986

3938,4

17164,8

фракция

•Бутадиен 1,3

й конденсат

Итого

Материальный баланс реактора гидрирования ББФ					
Приход			Расход		
Наименование	кг/ч	т/год	Наименование	кг/ч	т/год
бутилен-	12556,8	110000	Прогидрирова	12880,8	112835,8
бутадиеновая			нная бутилен-	,	

20309,2

130309,2

2304

14421,8

бутадиеновая

Углеводородны

й конденсат

Итого

17473,4

130309,2

1980

14421,8

фракция

фракция

Водород -

Итого

содержащий газ

тепловои оа	ланс реа	ктора гидрирова	ания
Приход		Расход	
Наименование	кВт	Наименование	кВт

8111943,9

9587635,2

460000

18159579,1

C

Тепло,

Тепло,

газом

Итого:

водород

Теплота реакции

ББФ

приходящее

приходящее

содержащем

Приход	Расход
Тепловой баланс реа	ктора гидрирования

Тепло,

ББФ

уходящее

прогидрированной

Тепло, уходящее с

углеводородным

конденсатом

Потери тепла

Итого:

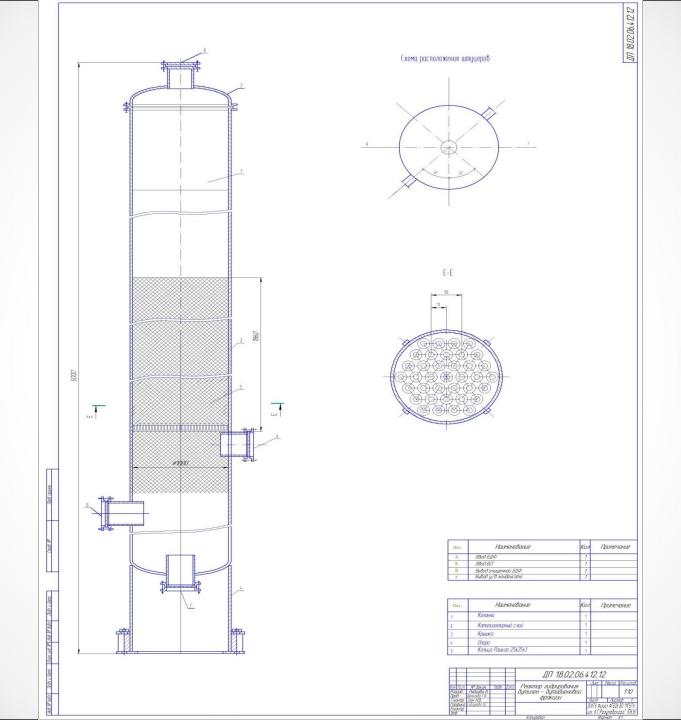
14096747,5

3918024

144807,6

18159579,1

Конструктивные параметры реактора гидрирования


К установке принимаем аппарат:

Диаметр реактора – 1000 мм

Высота реакционной зоны – 3032 мм

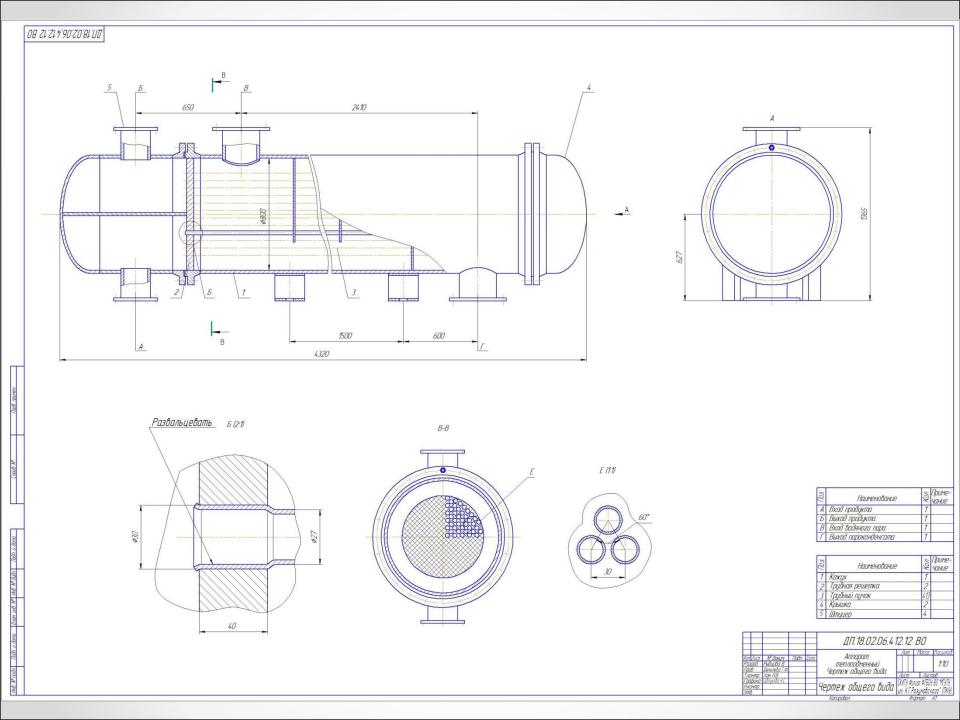
Высота катализаторного слоя – 1,86 м

Количество аппаратов – 2 шт

Конструктивные параметры теплообменного аппарата

К установке принимаем аппарат:

Поверхность теплообмена – 430 м2


Запас поверхности – 42%

Диаметр аппарата – 800 мм

Длина цилиндрической части 4000 мм

Общее число труб - 404 шт

Количество аппаратов – 2 шт

Технико экономические показатели

Наименование показателей	Единица измерения	По процессу	По проекту
1. Выпуск готовой продукции	T	110000	110000
2. Объем товарной продукции	т. руб.	834391,3	834391,3
3. Капитальные вложения.	т. руб.	7103418	7103418
4. Удельные капитальные вложения.	руб./т.	64,5	64,5
5. Фондоотдача	руб./руб.	117,5	117,5
6.Фондоёмкость	Руб./руб.	0,008	0,008
7. Численность рабочих	чел.	91	91
8. Производительность труда	т.руб.	9169,1	9169,1
выработка			
9. Себестоимость единицы	руб.	6068,3	6060,4
продукции			
10. Прибыль	т. руб.	166878,6	167751,8
11. Рентабельность продукции	%	25,00	25,16

Заключение

- 1) Изучены теоретические основы процесса гидрирования;
- 2) Рассчитан материальный баланс процесса гидрирования;
- 3) Произведен расчет материального баланса и тепловой нагрузки реактора;
- 4) Рассчитаны конструктивные параметры реактора. Высота реакционной зоны составила 3,032 м, диаметр 1 м, количество аппаратов 2 шт;
- 5) Произведен расчеты основных технических параметров теплообменника. Поверхность теплообмена 430 м2, запас поверхности теплообмена 42%, диаметр 800мм, общее число труб 404 шт.
- 6) Определены технико-экономические показатели действующего и проектируемого процессов. Прибыль действующего процесса составила 166878,6 тыс. рублей, а прибыль проектируемого процесса составила 167751,8тыс. рублей. Рентабельность процесса выросла на 0,16 %.

Спасибо за внимание