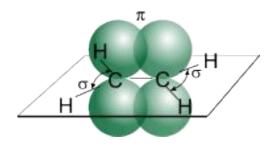
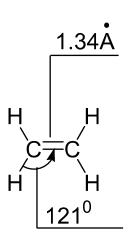

Алкены (олефины, этиленовые углеводороды)

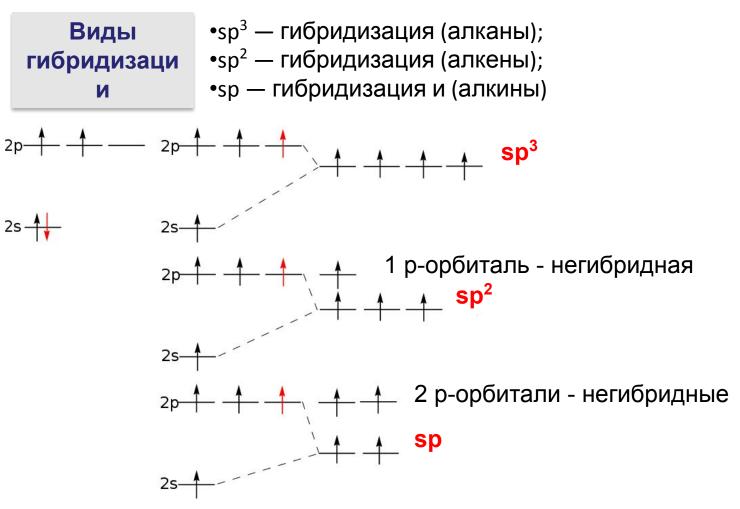


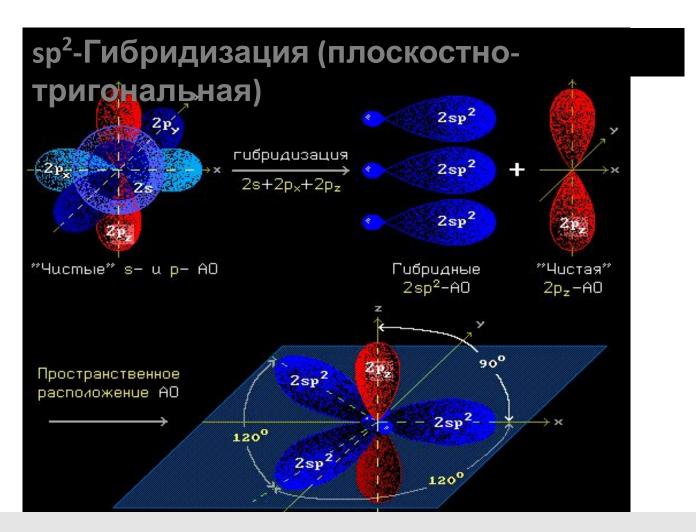
Лекция №5


- 1. Строение алкенов
- 2. Номенклатура алкенов
- 3. Изомерия
- 4. Физические свойства алкенов

Строение

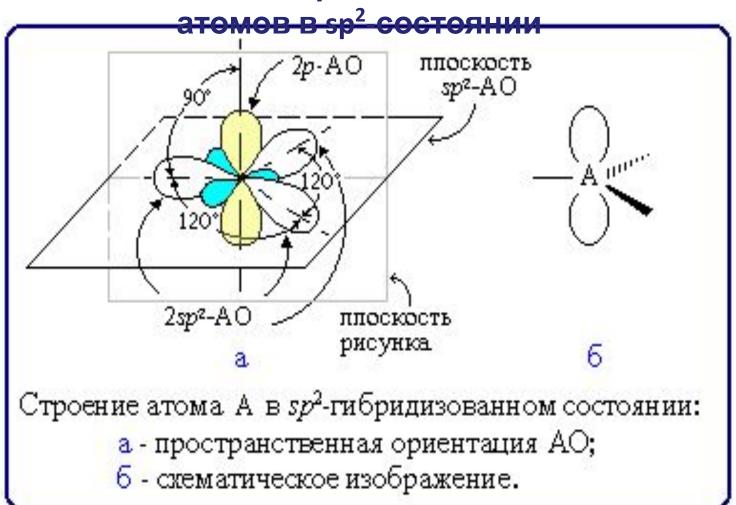
Алкены - ненасыщен**алжужнез**вороды, молекулы которых содержат одну двойную С-С-сявзь

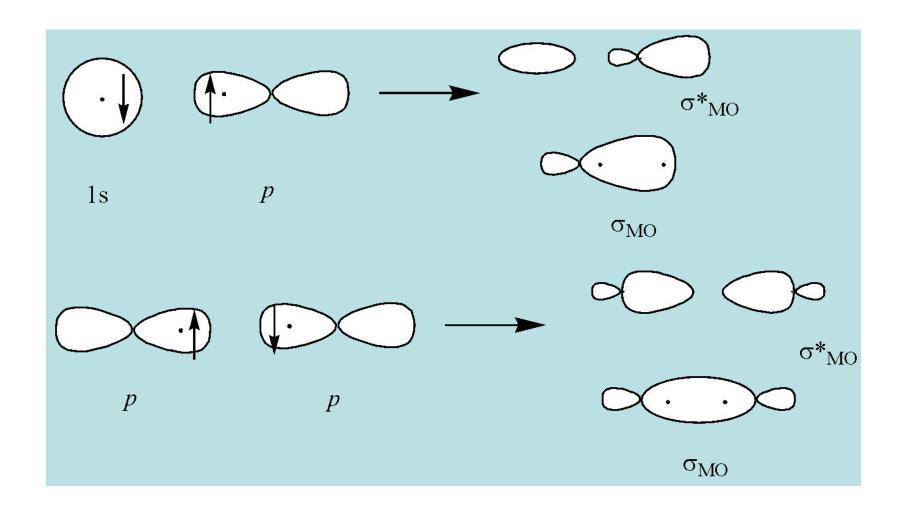

Атомы углерода C=C-связи находятся в состоянии sp²-гибридизации


C_nH_{2n}

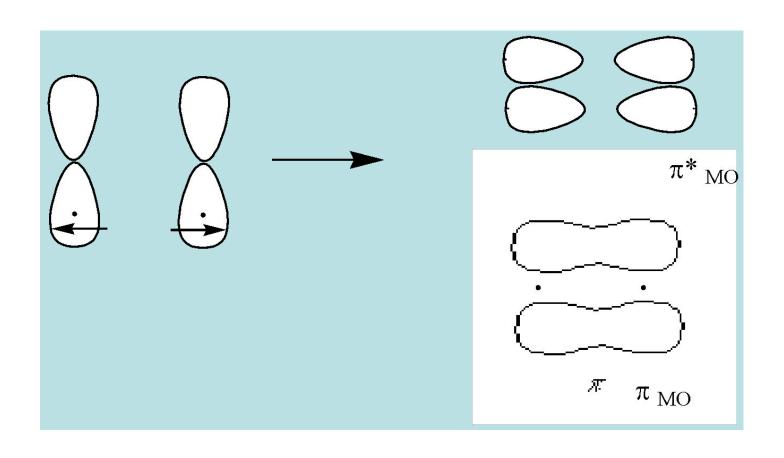
С=С-связь более короткая, чем С-С-связь

С=С-связь более прочная, чем простая С-С-связь. Общая энергия С=С-связи 145 ккал


Гибридизация орбиталей — гипотетический процесс смешения разных (s, p, d) орбиталей центрального атома многоатомной молекулы с возникновением того же числа орбиталей, эквивалентных по своим характеристикам.


Состояние характерно для атомов С, N, O и др. с двойной связью (sp²-атомы выделены красным цветом):

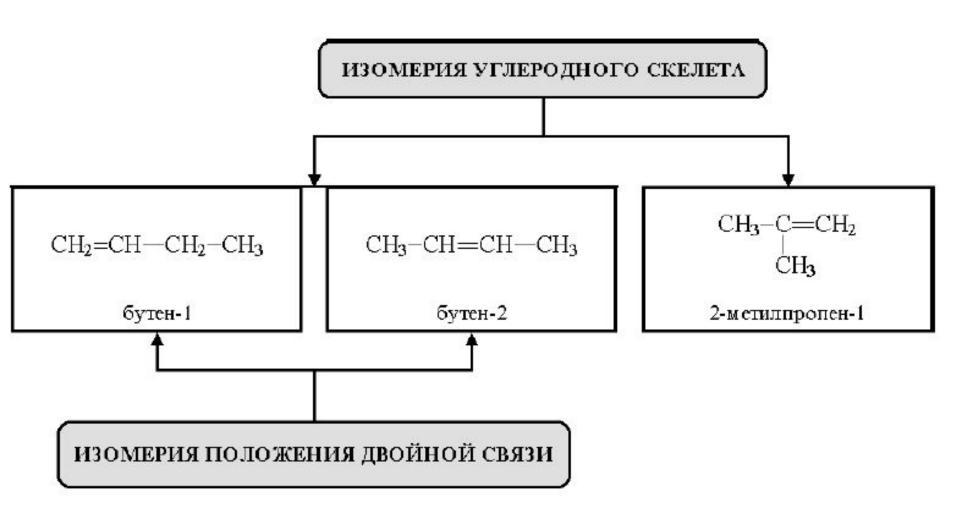
 H_2 C=C H_2 , H_2 C=CHR, R_2 C=NR, R_2 C=O, R-N=O, а также для катионов типа R_3 C⁺ и свободных радикалов R_3 C ·


Изображение пространственного строения

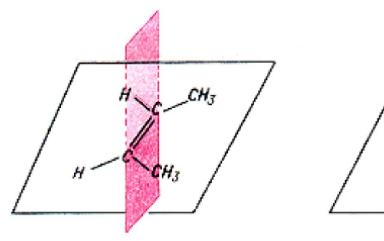
σ-Связь образуется и при перекрывании *s* и *p* или осевом перекрывании двух *p* орбиталей:

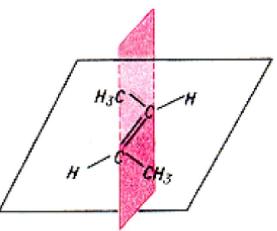
В случае параллельного расположения перекрывающихся *р* АО образуется *т* – связь:

Номенклатура алкенов


Неразветвленную цепь нумеруют с того конца, ближе к которому находится двойная связь. Суффикс –ан заменяется на –ен:

$${
m CH_2}{=}{
m CH_2}$$
 ${
m CH_2}{=}{
m CH}{-}{
m CH_3}$ ${
m CH_3}{
m CH}{=}{
m CHCH_2}{
m CH_2}{
m CH_3}$ этен, пропен, гекс-2-ен пропилен

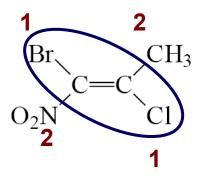

В случае разветвления главной считается цепь, включающая двойную связь, даже если эта цепь и не является самой длинной. Нумерация проводится таким образом, чтобы С-атом от которого начинается двойная связь, получил наименьший номер:


$$CH_2$$
=CH— этенил, винил
$$CH_2$$
=CH— CH_2 =CH— CH_2 -CH2— CH_2 -CH2— CH_2 -CH3— CH_2 -CH2— CH_2 -СН2— CH_2 -СН3— CH_2 -СН4— CH_2 -С CH_2 -СН4— CH_2 -С CH_2 -СН4— CH_2 -С CH_2 -С CH_2 -СН4— CH_2 -С CH_2 -СН4— CH_2 -С CH_2 -СН4— CH_2 -С CH_2 -СН4— CH_2 -С CH_2

Изомерия Структурная изомерия

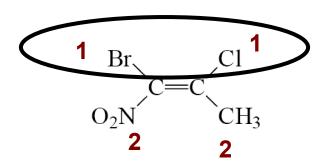
Изомерия. Пространственная изомерия

цис- и *транс*- изомеры бут-2-ена


$$H_3C$$
 CH_3 μuc -бут-2-ен $T_{\kappa u \Pi} = 4^0C$

$$H_3C$$
 $C=C$
 H
 CH_3

mpaнс-бут-2-ен $T_{_{\text{кип}}} = 1^{0}\text{C}$


2-метилбут-1-ен

Пространственная изомерия. Е, Z-номенклатура

(E)-1-бром-1-нитро-2-хлорпроп-1ен

(E)-1-bromo-2-chloro-1-nitroprop-1-ene

(Z)-1-бром-1-нитро-2-хлорпроп-1-ен

(Z)-1-bromo-2-chloro-1-nitroprop-1-ene

- 1. Используя систему Кана-Ингольда-Прелога, определяют относительное старшинство заместителей, связанных двойной связью и дают им номера по старшинству 1 или 2.
- а) Атом с большим атомным номером является старшим относительно атома с меньшим номером.
- б) Если два атома являются изотопами, то преимущество имеет атом с большим массовым числом.

Моррисон Р., Бойд Р. Органическая химия. Стр.88-90

2. Если две наиболее старшие группы расположены по одну сторону от плоскости **т**-связи,

то конфигурация заместителей обозначается символом Z.

3. Если же эти группы находятся по разные стороны от плоскости **π**-связи, то конфигурацию

обозначают символом Е.

НОМЕНКЛАТУРА Е, Z-номенклатура применима и к алкенам, для которых используется

цис-, транс-терминология. Благодаря своей универсальности Е, **Z-система**

вытесняет цис-, транс-номенклатуру

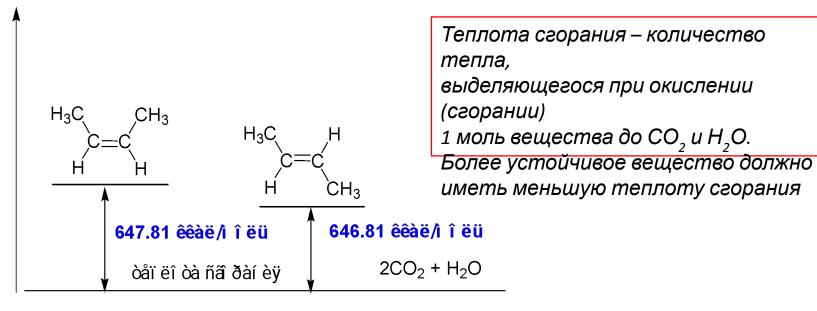
$$H_3C$$
 H $C=C$ CH_3

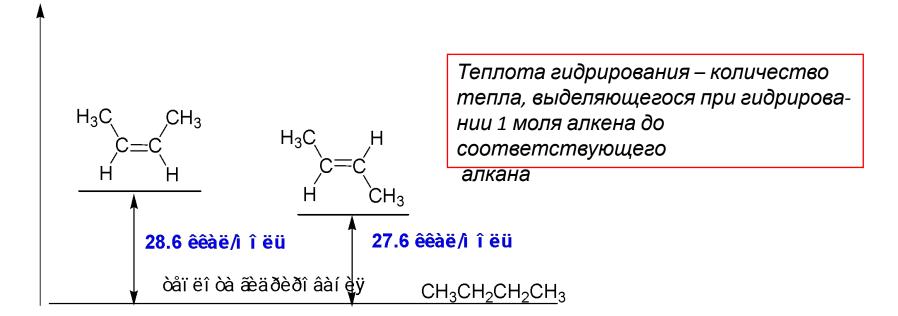
$$H_3C$$
 $C=C$ H

$$H_3C$$
 H $C=C$ $(CH_2)_3CH_3$ H $C=C$

$$H$$
 $C=C$
 $(CH_2)_3CH_3$
 H_3C
 C
 H
 H

Относительная устойчивость


Устойчиво степени алкилирования при двойной связи:


$$R \to R \to R \to R$$
 $C=C \to C$
 $R \to R$
 $R \to R$

Уменьшение устойчивости

в целом транс-алкены более устойчивы, чем соответствующие цис-изомеры.

Количественная оценка устойчивости получена на основании теплот сгорания и теплот гидрирования

Физические свойства

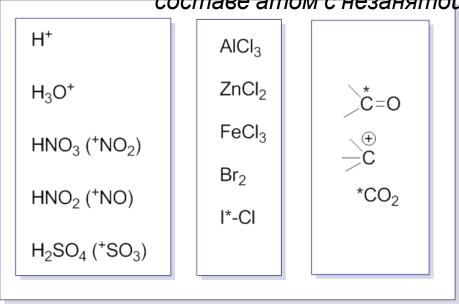
алкенов По физическим свойствам этиленовые углеводороды близки к алканам. При нормальных условиях углеводороды С2-С4 - газы, С5-С17 жидкости,

высшие представители – твердые вещества.

Температура их плавления и кипения, а также плотность увеличиваются C

ростом молекулярной массы.

Все опефины пегче волы, ппохо растворимы в ней, олнако растворимы


Название	Формула	°С	t°кип., °С	d ₄ ²⁰
Этилен	CH ₂ =CH ₂	-169,2	-103,8	0,570 (при -103,8°C)
Пропилен	CH ₂ =CH-CH ₃	-187,6	-47,7	0,610 (при -47,7°C)
Бутен-1	CH ₂ =CH-CH ₂ -CH ₃	-185,3	-6,3	0,630 (при -10°C)

Химические свойства алкенов

Типичная реакция алкенов – электрофильное присоединение A_E

Электрофил (E) – катион или нейтральная молекула, имеющая в своем

составе атом с незанятой орбиталью

Классификация органических реакций по характеру

Тип реакции	Реагент, Z	Типичные условия	Обозначение
$ \begin{cases} C - X & \xrightarrow{Z} \end{cases} \begin{cases} C - Z + X \end{cases}$			
[₹] Замещение			
	R·	Повышенная температура; облучение; H ₂ O ₂ , Нейтральная среда	SR
C-X $Z-Y$	E		AE
C = X $Z - Y$ $Z - X$ $Z - Y$			
Присоединени е	R∙	Повышенная температура; облучение; H ₂ O ₂ , Нейтральная среда	AR