Lecture 11.

Representation of Functionns as
Power Series.



Representations of Functions as Power Series

In this section we learn how to represent some familiar functions as sums of power
series. You might wonder why we would ever want to express a known function as a sum
of infinitely many terms. We will see later that this strategy is useful for integrating func-
tions that don’t have elementary antiderivatives and for approximating functions by
polynomials. (Scientists do this to simplify the expressions they deal with; computer
scientists do this to evaluate functions on calculators and computers.)

B Representations of Functions using Geometric Series

We will obtain power series representations for several functions by manipulating geo-
metric series. We start with an equation that we have seen before.

=l+x+x*+x+...=
1 —x 2

l =
a [xl <
=0

We first encountered this equation in Example 11.2.7, where we obtained it by observing
that the series is a geometric series with @ = 1 and r = x. Here our point of view is dif-
ferent: we now regard Equation 1 as expressing the function f(x) = 1/(1 — x) as a sum
of a power series. We say that =;_,x", |x| < 1, is a power series representation of
1/(1 — x) on the interval (—1, 1).



A geometric illustration of Equation 1 is shown in Figure 1. Because the sum of a
series is the limit of the sequence of partial sums, we have
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is the nth partial sum. Notice that as n increases, s,(x) becomes a better approximation
to f(x) for—1 <x < 1.

The power series (1) that represents the function f(x) = 1/(1 — x) can be used to
obtain power series representations of many other functions, as we see in the following
examples.




EXAMPLE 1 Express 1/(1 + x?) as the sum of a power series and find the interval of
convergence.

SOLUTION Replacing x by —x? in Equation 1, we have

Because this is a geometric series, it converges when | —x?| < 1, that is, x* < 1, or
|x| < 1. Therefore the interval of convergence is (—1, 1). (Of course, we could have
determined the radius of convergence by applying the Ratio Test, but that much work is

unnecessary here.) m




EXAMPLE 2 Find a power series representation for 1/(x + 2).

SOLUTION In order to put this function in the form of the left side of Equation 1, we
first factor a 2 from the denominator:
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This series converges when | —x/2| < 1, that is, | x| < 2. So the interval of conver-
gence is (—2, 2).




EXAMPLE 3 Find a power series representation of x*/(x + 2).
SOLUTION Since this function is just x* times the function in Example 2, all we have
to do is to multiply that series by x*:
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Another way of writing this series is as follows:
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As in Example 2, the interval of convergence is (—2, 2).




B Differentiation and Integration of Power Series

The sum of a power series is a function f(x) = 27—, c,(x — a)" whose domain is the
interval of convergence of the series. We would like to be able to differentiate and inte-
grate such functions, and the following theorem (which we won’t prove) says that we
can do so by differentiating or integrating each individual term in the series, just as we
would for a polynomial. This is called term-by-term differentiation and integration.

[2] Theorem If the power series = c,(x — a)” has radius of convergence
R > 0, then the function f defined by

fX)=c+alx—a)+cix—a)}+---= 2 calx — a)"
n=0
is differentiable (and therefore continuous) on the interval (¢ — R, a + R) and

() f'(x)=c +2c(x—a) + 3cs(x —a)* + - - - = i nc(x — a)™!
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The radii of convergence of the power series in Equations (i) and (i1) are both R.




NOTE 1 Equations (1) and (i1) in Theorem 2 can be rewritten in the form

(iii) i[i edx — a)”] = i i[c,.(x —a)"]

dx | —o a0 dx

(iv) J Iii Cal(x — a)"]dx = i j colx — a)"dx

n=0 n=0

We know that, for finite sums, the derivative of a sum is the sum of the derivatives and
the integral of a sum is the sum of the integrals. Equations (iii) and (iv) assert that the
same is true for infinite sums, provided we are dealing with power series. (For other
types of series of functions the situation is not as simple; see Exercise 44.)

NOTE 2 Although Theorem 2 says that the radius of convergence remains the same
when a power series is differentiated or integrated, this does not mean that the interval of
convergence remains the same. It may happen that the original series converges at an
endpoint, whereas the differentiated series diverges there. (See Exercise 45.)



EXAMPLE 4 Express 1/(1 — x)* as a power series by differentiating Equation 1. What
is the radius of convergence?

SOLUTION We start with
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Differentiating each side, we get
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If we wish, we can replace n by n + 1 and write the answer as
1
a -2

According to Theorem 2, the radius of convergence of the differentiated series is the
same as the radius of convergence of the original series, namely, R = 1.
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EXAMPLE 5 Find a power series representation for In(1 + x) and its radius of
convergence.

SOLUTION We notice that the derivative of this function is 1/(1 + x). From Equation 1
we have
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Integrating both sides of this equation, we get
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To determine the value of C we put x = 0 in this equation and obtain In(1 + 0) = C.
Thus C = 0 and

X, B2 = x"
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The radius of convergence is the same as for the original series: R = 1. ]



EXAMPLE 6 Find a power series representation for f(x) = tan™'x.
SOLUTION We observe that f'(x) = 1/(1 + x?) and find the required series by inte-
grating the power series for 1/(1 + x?) found in Example 1.
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To find C we put x = 0 and obtain C = tan™' 0 = 0. Therefore

tan 'x =x —
3
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Since the radius of convergence of the series for 1/(1 + x?) is 1, the radius of conver-
gence of this series for tan™'x is also 1. B




B Functions Defined by Power Series

Some of the most important functions in the sciences are defined by power series and are
not expressible in terms of elementary functions (as described in Section 7.5). Many of
these arise naturally as solutions of differential equations. One such class of functions is the
Bessel functions, named after the German astronomer Friedrich Bessel (1784-1846).
These functions first arose when Bessel solved Kepler’s equation for describing planetary
motion. Since that time, Bessel functions have been applied in many different physical situ-
ations, including the temperature distribution in a circular plate and the shape of a vibrating
drumhead. Bessel functions appear in the next example as well as in Exercises 39 and 40.
Other examples of functions defined by power series are given in Exercises 38 and 41.



EXAMPLE 8 The Bessel function of order 0 is defined by
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l)2

Jo(x) = 2 (-

(a) Find the domain of J,.

(b) Find the derivative of J,.

SOLUTION

(a) Leta, = (—1)"x*/[2*"(n!)*]. Then
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Thus, by the Ratio Test, the given series converges for all values of x. In other words,
the domain of the Bessel function J; is (—oe, ) =

(b) By Theorem 2, J, is differentiable for all x and its derivative is found by term-by-
term differentiation as follows:
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11.10 | Taylor and Maclaurin Series

In Section 11.9 we were able to find power series representations for a certain restricted
class of functions, namely, those that can be obtained from geometric series. Here we
investigate more general problems: Which functions have power series representations?
How can we find such representations? We will see that some of the most important func-

tions in calculus, such as e” and sin x, can be represented as power series.

B Definitions of Taylor Series and Maclaurin Series
We start by supposing that f is a function that can be represented by a power series

[1] fG=c+alx—a)+ex—al+ea(x—a)+cax—a)f+--- |x—a|<R

Let’s try to determine what the coefficients ¢, must be in terms of f. To begin, notice that
if we put x = a in Equation 1, then all terms after the first one are 0 and we get

f(a) = 0o

By Theorem 11.9.2, we can differentiate the series in Equation 1 term by term:
[2] f'(x) =c1 + 2cox — @) + 3cs(x — a)* + des(x —a)* + - - - |x—a| <R
and substitution of x = a in Equation 2 gives
f'l@) = ¢

Now we differentiate both sides of Equation 2 and obtain



3]

f'(x)=2c;+2:3cs(x—a) +3-dcs(x —a)* + - - - |x —a| <R
Again we put x = a in Equation 3. The result is
f"(a@) = 2c;
Let’s apply the procedure one more time. Differentiation of the series in Equation 3 gives
f"(x)=2:3c3+2-3-des(x—a)+3-4-5c(x—a)+--- |x —a| <R
and substitution of x = a in Equation 4 gives
f"(@) =2-3c;=3!c

By now you can see the pattern. If we continue to differentiate and substitute x = a, we
obtain

f®a@) =234+ nc,=nlc,
Solving this equation for the nth coefficient c,, we get

_ f(n)( a)

n!

Cn

This formula remains valid even for n = 0 if we adopt the conventions that 0! = 1 and
f© = f. Thus we have proved the following theorem.



[5] Theorem If f has a power series representation (expansion) at «, that is, if

»

f(x) = D calx — @) |x —a| <R

n=0
then its coefficients are given by the formula

_ f(n)( a)
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Substituting this formula for ¢, back into the series, we see that if f has a power series
expansion at a, then it must be of the following form.

® (n)
6 f(x)=’§)fn—!(a)(x—a)"
=f(a)+% x—a)+ f;(!a) (x —a)?+ f;g“) R

The series in Equation 6 is called the Taylor series of the function f at a (or about
a or centered at a). For the special case a = 0 the Taylor series becomes



The series in Equation 6 is called the Taylor series of the function f at a (or about
a or centered at a). For the special case @ = 0 the Taylor series becomes

(")(0) . f'(0) f"(0) i’
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This case arises frequently enough that it is given the special name Maclaurin series.

NOTE 1 When we find a Taylor series for a function f, there is no guarantee that the
sum of the Taylor series is equal to f. Theorem 5 says that if f has a power series
representation about a, then that power series must be the Taylor series of f. There exist
functions that are not equal to the sum of their Taylor series, such as the function given
in Exercise 96.

NOTE 2 The power series representation at a of a function is unique, regardless of
how it is found, because Theorem 5 states that if f has a power series representation
f(x) = Zcu(x — a)", then ¢, must be f“(a)/n!. Thus all the power series representa-
tions we developed in Section 11.9 are in fact the Taylor series of the functions they
represent.






EXAMPLE 1 We know from Equation 11.9.1 that the function f(x) = 1/(1 — x) hasa
power series representation
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According to Theorem 5, this series must be the Maclaurin series of f with coefficients
ca given by f ™(0)/n!. To confirm this, we compute
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EXAMPLE 2 For the function f(x) = &, find the Maclaurin series and its radius of
convergence.

SOLUTION If f(x) = e*, then f™(x) = e*, so f™(0) = €° = 1 for all n. Therefore the
Taylor series for f at O (that is, the Maclaurin series) is

z f™(0) ., ; i T
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To find the radius of convergence we let @, = x"/n!. Then

n+l !
el Bl | P |
a, rn+1! x" n+1

so, by the Ratio Test, the series converges for all x and the radius of convergence
ISR =,




B When Is a Function Represented by Its Taylor Series?

From Theorem 5 and Example 2 we can conclude that if we know that ¢* has a power
series representation at 0, then this power series must be its Maclaurin series

x n
X

et =Y
n=>0 n!

So how can we determine whether e* does have a power series representation?

Let’s investigate the more general question: under what circumstances is a function
equal to the sum of its Taylor series? In other words, if f has derivatives of all orders,
when is it true that

® (n)
10=3 L0 - ap

n=0

As with any convergent series, this means that f(x) is the limit of the sequence of partial
sums. In the case of the Taylor series, the partial sums are
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Notice that 7, is a polynomial of degree n called the nth-degree Taylor polynomial of
f at a. For instance, for the exponential function f(x) = e, the result of Example 2 shows
that the Taylor polynomials at 0 (or Maclaurin polynomials) with n = 1, 2, and 3 are
X ) S

Tv(ix)=1+x Ti(x)=1+x+

The graphs of the exponential function and these three Taylor polynomials are drawn in
Figure 1.
In general, f(x) is the sum of its Taylor series if

f(x) = lim T,(x)

n—x«

If we let
R,(x) = f(x) — T,(x) so that f(x) = Tu(x) + Ru(x)

then R,(x) is called the remainder of the Taylor series. If we can somehow show that
lim,—. . R,(x) = 0, then it follows that

h_l}; T,,(I) ~ ll_{'; [f(X) - R,,(,l)] =f(X) . '!1_1}; R,,(X) =f(X)

We have therefore proved the following theorem.



y=T;(x)

FIGURE 1

As n increases, T,(x) appears to
approach e* in Figure 1. This suggests
that e* is equal to the sum of its
Taylor series.




We have therefore proved the following theorem.

8 | Theorem If f(x) = T.(x) + R.(x), where 1, is the nth-degree Taylor polyno-
mial of f at a, and if

lim R,(x) =0

n—%

for |[x — a| < R, then f is equal to the sum of its Taylor series on the interval
|x —a| <R

In trying to show that lim,_. .. R,(x) = 0 for a specific function f, we usually use the
following theorem.

9 | Taylor’s Inequality If | f™*"(x) | = M for |x — a| < d, then the remainder
R,(x) of the Taylor series satisfies the inequality

3
(n+ 1)!

|R.(x)| = |x — a|™"! for [x —a|l<=d




PROOF We first prove Taylor’s Inequality for n = 1. Assume that | f"(x)| < M. In
particular, we have f"(x) = M, so for a < x < a + d we have

ff"(t)dtsfudt

An antiderivative of f” is f’, so by Part 2 of the Fundamental Theorem of Calculus, we
have

fO-f@<Mx-a o f()=<fla)+Mx-a
[[r@de<[*1f@ + Mt - ) dr

(x — a)’

1) = f@ < f@)(x = a) + M=

) = f@ = f@G - @) < 5 (= af

But Ri(x) = f(x) — Ti(x) = f(x) — f(a) — f'(@(x — a). So

R < 5 (x = af




A similar argument, using f"(x) = —M, shows that

So |R|(x)| =

Although we have assumed that x > a, similar calculations show that this inequality is
also true for x < a.

This proves Taylor’s Inequality for the case where n = 1. The result for any 7 is
proved in a similar way by integrating n + 1 times. (See Exercise 95 for the case
n=2) O

NOTE In Section 11.11 we will explore the use of Taylor’s Inequality in approximating
functions. Our immediate use of it is in conjunction with Theorem 8.



When we apply Theorems 8 and 9 it is often helpful to make use of the following fact.

= for every real number x

This is true because we know from Example 2 that the series = x"/n! converges for all x
and so its nth term approaches 0.




EXAMPLE 3 Prove that e” is equal to the sum of its Maclaurin series.

SOLUTION If f(x) = €, then f“*"(x) = ¢* for all n. If d is any positive number and
|x| = d, then | f*""(x)| = e* = €. So Taylor’s Inequality, witha = 0 and M = ¢,

says that

ed

IR,,(X) I = (n-}-—l)'

|x|"*'  for |x|<d

Notice that the same constant M = e¢“ works for every value of n. But, from Equa-
tion 10, we have
d | X |n+l

n+l d
=% lim ———
n—» (n + 1)!

lim e—lxl
n—= (n + 1)!

=0

It follows from the Squeeze Theorem that lim, ... | R,(x) | = 0 and therefore
lim, .. R,(x) = 0O for all values of x. By Theorem 8, e” is equal to the sum of its
Maclaurin series, that is,

for all x

o0 x'l
11 =y




In particular, if we put x = 1 in Equation 11, we obtain the following expression for
the number e as a sum of an infinite series:

[12] an= +—+—+ ...

EXAMPLE 4 Find the Taylor series for f(x) = e*ata = 2.

SOLUTION We have f™(2) = e? and so, putting @ = 2 in the definition of a Taylor
series (6), we get

w (n)(2) o e’.’

SLE -2y =3 -2y

n=0 n: n=0

Again it can be verified, as in Example 2, that the radius of convergence is K = ®. As
in Example 3 we can verify that lim, ... R,(x) = 0, so

»

[13] ex = e; (x — 2)" for all x s

n=0

We have two power series expansions for e*, the Maclaurin series in Equation 11 and
the Taylor series in Equation 13. The first is better if we are interested in values of x near
0 and the second is better if x is near 2.



Independent Investigation Work!!

Find Taylor’s series for:
1) y=sin X
2) y=Ccos X
3) y=tan x
4) y=(1+x)"n
a) n=-1
b) n=1/2
c) n=-1/2



