
КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

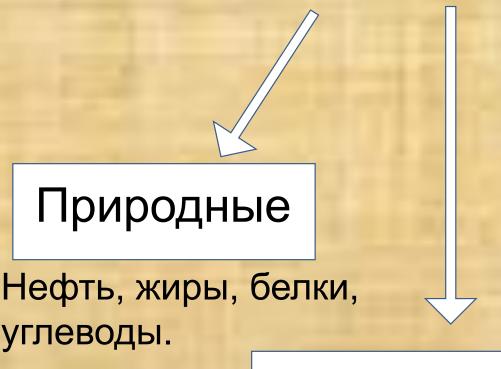
Классификация веществ

Неорганические - тысячи веществ

Раздел химии, который изучает органические вещества, стали называть «органической химией».

Органическая химия - это химия соединений углерода (кроме оксидов углерода, угольной кислоты и её солей).

В состав органических веществ кроме углерода входят элементы: H, O, N реже P, S, галогены.


Органические вещества имеют ряд особенностей:

- 1.Органических веществ гораздо больше, чем неорганических веществ, их более 2 млн.
- 2.Органические вещества имеют более сложное строение.
- 3. Многие органические вещества обладают огромной молекулярной массой например, белки, углеводы, нуклеиновые кислоты и др.

4. Органические вещества имеют низкие температуры кипения и плавления, т.к. у них молекулярная кристаллическая решетка.

5.При горении органических веществ обычно образуются углекислый газ и вода.

Органические вещества

Синтетические

Лекарства, витамины, пластмассы.

Искусственные

Бензин, вискоза.

Углеводороды -

алканы, алкены, алкины, ароматические, диеновые...

Кислородсодержащие -

спирты, фенолы, карбоновые кислоты, альдегиды, кетоны, простые и сложные эфиры...

Азотсодержащие -

аминокислоты, белки, нитросоединения...

Углеводы-

глюкоза, сахароза, крахмал, целлюлоза... 🖼 муShared

Классификация соединений по строению углеродной цепи

Ациклические соединения

Ациклические соединения - соединения с открытой (незамкнутой) углеродной цепью. Эти соединения называются также алифатическими.

Среди ациклических соединений различают предельные (насыщенные), содержащие в скелете только одинарные связи С-С и непредельные (ненасыщенные), включающие кратные связи С=С и С ≡С.

Ациклические соединения

предельные

н-Пентан

$$Br$$
 CH_3
 $-CH$
 $-CH_2$
 $-CH_3$

2-Бромбутан

непредельные

Пропипен

$$CH_3$$
 $CH_2=C-CH=CH_2$

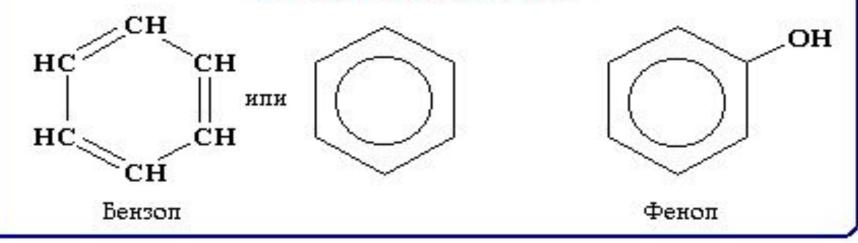
Изопрен

 $HC \equiv CH$

Ацетипен

Циклические соединения -

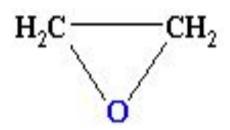
В зависимости от природы атомов, составляющих цикл, различают карбоциклические и гетероциклические соединения.

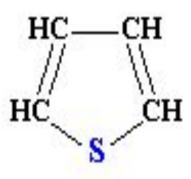

Карбоциклические соединения содержат в цикле только атомы углерода. Они делятся на две существенно различающихся по химическим свойствам группы: алифатические циклические - сокращенно алициклические - и ароматические соединения.

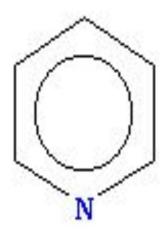
Карбоциклические соединения

алициклические

ароматические




Гетероциклические соединения


содержат в цикле, кроме атомов углерода, один или несколько атомов других элементов – *гетероатомов*

(от греч. *heteros* - другой, иной) - кислород, азот, серу и др.

Гетероциклические соединения

Этипеноксид (эпоксид)

Тиофен

Пиридин

Классификация соединений по функциональным группам

Соединения, в состав которых входят только углерод и водород, называются углеводородами. Другие, более многочисленные, органические соединения можно рассматривать как производные углеводородов, которые образуются при введении в углеводороды функциональных групп, содержащих другие элементы. В зависимости от природы функциональных групп органические соединения делят на классы.

Классы органических соединений

Функциональ- ная группа	Название группы	Классы соединений	Общая формула	Пример
-ОН	Гидроксип	Спирты	R-OH	С₂Н₅ОН этиповый спирт
		Фенопы		⊙-○н феноп
>c=o	Карбонип	Альдегиды	R H≻C=O	СН ₃ СНО уксусный альдегид
		Кетоны	R>C=O	CH ₃ COCH ₃ ацетон
-c ^{OH} OH	Карбоксип	Карбоновые киспоты	R-C ^{¢O} OH	СН ₃ СООН уксусная киспота
-NO ₂	Нитрогруппа	Нитро- фединения	R-NO2	CH₃NO₂ нитрометан
-NH ₂	Аминогруппа	Амины	$R-NH_2$	⊙-N H ₂ анилин
-F, -Cl, -Br, -I (Hal)	Фтор, жпор, бром, иод (галоген)	Галогено- производные	R-Hal	СН ₃ С1 хпористый метип

Примечание: к функциональным группам иногда относят двойную и тройную связи.

В состав молекул органических соединений могут входить две или более одинаковых или различных функциональных групп.
 Например:

HO-CH₂-CH₂-OH (этиленгликоль);

 NH_2 -C H_2 -COOH (аминокислота *глицин*).

Все классы органических соединений взаимосвязаны.

Переход от одних классов соединений к другим осуществляется в основном за счет превращения функциональных групп без изменения углеродного скелета.

Соединения каждого класса составляют гомологический ряд.

Значение органической химии

Без знаний органической химии невозможно понять, как осуществляется функционирование систем, образующих живой организм, т.е. сложно понимание биологии и медицины.

С помощью органического синтеза получают разнообразные органические вещества: искусственные и синтетические волокна, каучуки, пластмассы, красители, пестициды, синтетические витамины, гормоны, лекарства и.т.д.

Многие современные продукты и материалы, без которых мы не можем обходиться, являются органическими веществами

Развитие биотехнологии, генной инженерии, создание новых видов высокопродуктивных организмов было бы невозможно без достижения органической химии.

Синтетические органические соедине

моющие средства

синтетические каучуки

синтетические волокна и ткани

краски, эмали и клеи

лекарственные средства

удобрения