Устно вычислите значение производной

$$(5)' = 0$$

(x)' = 1

(5x)' = 5

$\left(2x^4\right) = 8x^3$

$(-0,5x^6)$ $-3x^5$

(2x-3)'=2

$$((2x-3)^3)' =$$

$$= (2x-3)' \cdot 3(2x-3)^2$$

$$= 6 \cdot (2x-3)^2$$

$(e^x) = e^x$

$$\left(e^{3x+2}\right) =$$

$$=e^{3x+2}\cdot(3x+2)'$$

$$= 3e^{3x+2}$$

$(\ln x)' = \frac{1}{x}$

$$\left(\ln(3x+5)\right)'=$$

$$3 \cdot \frac{3}{3x + 5} = \frac{3}{3x + 5}$$

$$1)y = \ln(2x - 7)$$

$$2)y = \ln(1+5x)$$

7)

 $y' = (e^{4x-12})'$

$$3) y = \log_3 x$$

$$4)y = \log_{0.3} x + \sin x$$

$$5)y = lqx - \cos x$$

$$6)y = x \ln x$$

1)
$$y = \ln(2x - 7)$$
 $\frac{2}{2x - 7}$ $\frac{2}{5}$
2) $y = \ln(1 + 5x)$ $\frac{1}{x \ln 3}$ $\frac{1}{x \ln 0.3} + \cos x$
4) $y = \log_{0.3} x + \sin x$ $\frac{1}{x \ln 10} + \sin x$
5) $y = lqx - \cos x$ $\frac{1}{x \ln 10} + \sin x$
6) $y = x \ln x$ $\ln x + 1$
 $y' = (e^{4x - 12})' = 4e^{4x - 12}$