
Реализация статистических методов оценки параметров динамической случайной величины

Выполнила Седова М.В. 51 группа

- Формализация поставленной задачи
- Выбор методов оценки параметров динамического процесса и обоснование их оптимальности
- Разработка численного алгоритма реализации метода

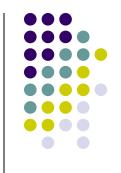
- Произведение расчетов по разработанному алгоритму с оценкой точности и адекватности полученной модели
- -Соотношение полученных результатов с реальными данными, их экономическое обоснование

$xt = \chi 1f(t) + \chi 2\varphi(t) + \chi 3\psi(t) + \varepsilon t.$

- где хі = 1, если факторы і-го типа участвуют в формировании значений ряда и хі = 0 – в противном случае.
- f(t) Долговременные, формирующие общую тенденцию в изменении анализируемого признака xt. Эту функцию называют функцией тренда или просто – трендом.
- ф(t) Сезонные, формирующие периодически повторяющиеся в определенное время года колебания анализируемого признака.
- ψ(t) Циклические, формирующие изменения анализируемого признака, обусловленные действием долговременных циклов экономической или демографической природы
- εt Случайные (нерегулярные), не поддающиеся учету и регистрации

Модель Хольта-Уинтерса

$$\begin{split} \widehat{y}_{t+d} &= a_t (r_t)^d \mathcal{O}_{t+(dMODs)-s} \\ a_t &= \alpha_1 \big(y_t / \mathcal{O}_{t-s} \big) + \big(1 - \alpha_1 \big) a_{t-1} r_{t-1} \\ r_t &= \alpha_3 \big(a_t / a_{t-1} \big) + \big(1 - \alpha_3 \big) r_{t-1} \\ \mathcal{O}_t &= \alpha_2 \big(y_t / a_t \big) + \big(1 - \alpha_2 \big) \mathcal{O}_{t-s} \end{split}$$


s- период сезонности

 $\Theta_i, i \in 0$ - сезонный профиль

 r_{t} - параметр тренда

 a_t - параметр прогноза

Модель Тейла-Вейджа

$$\widehat{y}_{t+d} = a_t + db_t \Theta_{t+(dMODs)-s}
a_t = \alpha_1 (y_t - \Theta_{t-s}) + (1 - \alpha_1) (a_{t-1} + b_{t-1})
b_t = \alpha_3 (a_t - a_{t-1}) + (1 - \alpha_3) b_{t-1}
\Theta_t = \alpha_2 (y_t - a_t) + (1 - \alpha_2) \Theta_{t-s}$$

s- период сезонности

 $m{\omega}_i, \ i \in 0 \cdot \cdot \cdot s - 1$ - сезонный профиль b_t - параметр тренда a_t - параметр прогноза

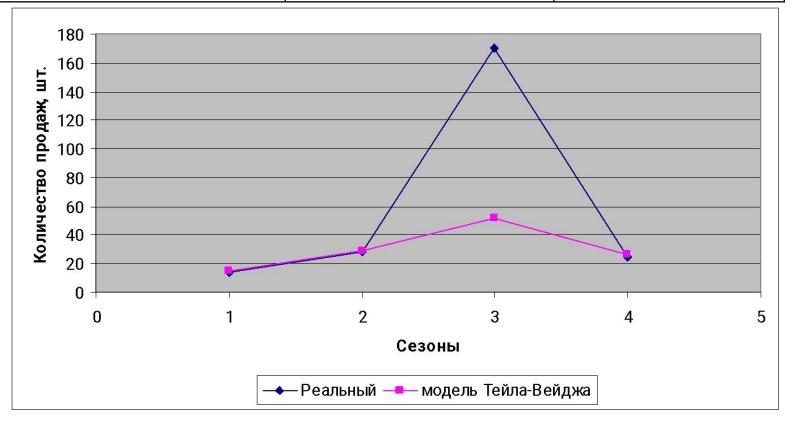
	Продажа климатической техники, шт.				
сезон	2006-2007	2007-2008	2008-2009		
Зима	15	18	11		
Весна	32	47	23		
Лето	57	64	53		
Осень	19	25	194		

	Продажа климатической техники, шт.				
сезон	2006-2007	2007-2008	2008-2009		
Зима	15	18	11		
Весна	32	47	23		
Лето	57	64	53		
Осень	19	25	23		

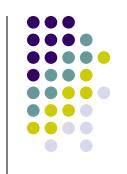
Коэф. фактические Тренд, Аддитивная $(y - \hat{y})$ $(y - \hat{y_a})^2$ модель, ў сезонности, ѕ данные, у 70 60 Количество продаж, шт. 50 → Исходный 40 – Тренд Аддитив 30 - Мультип 20 10 0 5 10 0 15 20 Сезон

$$s_1 = \frac{(y_1 - \widehat{y_1}) + (y_5 - \widehat{y_5}) + (y_9 - \widehat{y_9})}{3}$$

$$s_2 = \frac{(y_2 - \widehat{y_2}) + (y_6 - \widehat{y_6}) + (y_{10} - \widehat{y_{10}})}{3}$$


Прогноз

2009- 2010	Лин. Тренд (1)	Аддит. мод. (1)	Мульт. мод. (1)	Экс. Тренд (2)	Аддит. мод. (2)	Мульт. мод. (2)	Тейла- Вейджа	Хольта- Уинтерса
Зима	33	16	15	29	16	15	15	14
Весна	33	35	35	29	35	35	29	33
Лето	33	59	60	29	59	60	52	56
Осень	33	23	23	29	23	23	26	21
RMSE	17,36	5,88	5,90	17,91	5,89	5,95	5,26	5,62



	Реальные	Тейла-Вейджа
Зима	14	15
Весна	28	29
Лето	170	52
Осень	25	26

- На основе исходных данных были оценены модели прогнозирования: Аддитивная и Мультипликативная с линейным и экспоненциальным трендами, Хольта-Уинтерса и Тейла-Вейджа

- Наилучший результат дала модель Тейла-Вейджа (RMSE=5,26)

- Произведено сравнение полученных результатов по модели Тейла-Вейджа с реальными данными: по трем сезонам прогнозные значения совпадают с реальными, летней сезон имеется сильное различие
- Различие связано с аномально жарким летом, а не с ошибками прогноза
- Любое прогнозирование должно быть неотрывно рассмотрено с целым комплексом различных факторов