
Классификация органических соединений и реакций. Изомерия

Лекция 2

Классификация органических соединений

1. По строению углеродной цепи

- Алициклические соединения соединения с открытой (незамкнутой) углеродной цепью. Эти соединения называются также алифатическими
- Среди ациклических соединений различают **предельные** (насыщенные), содержащие в скелете только одинарные связи С-С и **непредельные** (ненасыщенные), включающие кратные связи С=С и С=С

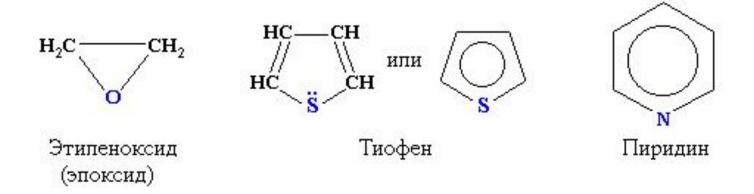
Ациклические (алифатические) соединения

предельные

$$CH_3$$
 Br CH_3 — CH_2 — CH_2 — CH_2 — CH_3 — CH_3 — CH_3 — CH_3 — CH_4 — CH_4 — CH_4 — CH_4 — CH_3 8 -Пентан Изобутан 2-Бромбутан

непредельные

- **Циклические соединения** соединения с замкнутой углеродной цепью.
- В зависимости от природы атомов, составляющих цикл, различают *карбоциклические и гетероциклические соединения*.


Карбоциклические соединения Карбоциклические алициклические **соединения** содержат в цикле только атомы ÇH, углерода. H,C Они делятся на две Циклобутан Циклогексан Циклогексен существенно различающихся по ароматические химическим свойствам OH группы: алифатические ипи $^{\rm CH}$ циклические (алициклические) и Феноп Бензоп

ароматические

соединения.

• Гетероциклические соединения содержат в цикле, кроме атомов углерода, один или несколько атомов других элементов – гетероатомов – кислород, азот, серу и другие.

Гетероциклические соединения

2. По функциональным группам

- В каждом из типов углеродного скелета все соединения распределяются по классам в зависимости от входящих в их состав функциональных групп.
- *Функциональной группой* называют атом или группу атомов, определяющих принадлежность соединения к конкретному классу и ответственных за его химические свойства.
- Например, класс спиртов (группа -OH), класс аминов (группа -NH2), класс карбоновых кислот (группа -COOH), класс металлоорганических соединений и т. д.:
- Кратную связь также можно рассматривать как функцию. Соответственно углеводороды, содержащие кратные связи, подразделяются на алкены, алкины, диены и т. д.
- Соединения с несколькими одинаковыми функциональными группами называются полифункциональными
- Если в молекуле содержатся разные функциональные группы, то соединение относят к классу *гетерофункциональных*

Классы органических соединений

Функциональ- ная группа	Название группы	Классы соединений	Общая формула	Пример
-он	Гидроксип	Спирты	R-OH	С₂Н₅ОН этиповый спирт
		Фенопы		Он феноп
>c=o	Карбонип	Апьдегиды	$_{\rm H}^{\rm R}$ C=O	СН ₃ СНО уксусный альдегид
		Кетоны	R>C=O	CH ₃ COCH ₃ ацетон
-c ^{OH}	Карбоксип	Карбоновые киспоты	R-C ^{∕O} OH	СН ₃ СООН уксусная киспота
-NO ₂	Нитрогруппа	Нитро- ∞единения	R-NO2	CH₃NO₂ нитрометан
-NH ₂	Аминогруппа	Амины	R-NH ₂	⊚-мн ₂ анипин
-F, -Cl, -Br, -I (Hal)	Фтор, жпор, бром, иод (галоген)	Галогено- производные	R-Hal	СН ₃ С1 хпористый метип

Примечание: к функциональным группам иногда относят двойную и тройную связи.

Классификация органических реакций

- Классификацию органических реакций проводят на основе общих для всех реакций признаков: строение и состав исходных и конечных продуктов; изменение степеней окисления реагирующих частиц; тепловой эффект реакции; ее обратимость и т.п.
- Наиболее часто органические реакции классифицируют по следующим признакам:
- 1. по конечному результату реакции (на основе сопоставления строения исходных и конечных продуктов);
- по минимальному числу частиц, участвующих в элементарной реакции;
- **3. по механизму разрыва ковалентных связей** в реагирующих молекулах.
 - Тип многостадийных реакций определяют по самой медленной (лимитирующей) стадии. Различные способы классификации часто сочетаются друг с другом.

1. Классификация реакций по конечному результату

- В основе этой классификации лежит сопоставление числа, состава и строения исходных и конечных продуктов по уравнению реакции. В соответствии с конечным результатом различают следующие типы органических реакций:
- Замещение (S) (от англ. substitution);
- Присоединение (A) (от англ. addition);
- Отщепление (элиминирование) (E) (от англ. elimination);
- Изомеризация (перегруппировка);
- Разложение.
- Если процесс сопровождается изменением *степени* окисления атома углерода в органическом соединении, то выделяют также **реакции окисления и** восстановления.

Реакции замещения

• Атом или атомная группировка в молекуле органического соединения замещается на другой атом (или атомную группировку):

$$AB + C \rightarrow AC + B$$

$$C_2H_6 + Cl_2$$
 (на свету) — \leftarrow $CH_3CH_2Cl + HCl$ хлорирование этана

Реакции присоединения

 В реакциях присоединения молекула органического соединения и молекула простого или сложного вещества соединяются в новую молекулу, при этом другие продукты реакции не образуются:

$$A + B \rightarrow C$$

$$CH_2$$
= CH - CH_3 + Br_2 \longrightarrow CH_2Br - $CHBr$ - CH_3 бромирование пропена

$$CH_2 = CH_2 + H_2O \longrightarrow CH_3CH_2OH$$
 гидратация этилена

$$n CH_2$$
= CH_2 → (- CH_2 - CH_2 -) n полимеризация этилена

Реакции отщепления

• В реакции отщепления (<u>элиминирования</u>) происходит отрыв атомов или атомных групп от молекулы исходного вещества при сохранении ее углеродного скелета

$$A \rightarrow B + C$$

• отщепление хлороводорода (при действии на хлоралкан спиртовым раствором щёлочи)

$$CH_3$$
- CH_2 Cl $\rightarrow CH_2$ = CH_2 + HCl

• отщепление воды (при нагревании спирта с серной кислотой)

 CH_3 - CH_2OH — CH_2 = CH_2 + H_2O дегидратация отщепление водорода от алкана (в присутствии катализатора)

$$CH_3$$
- CH_3 \rightarrow CH_2 = CH_2 + H_2 дегидрирование

Реакции изомеризации или перегруппировки

• В органическом соединении происходит переход (миграция) отдельных атомов или групп атомов от одного участка молекулы к другому без изменения ее качественного и количественного состава:

$$A \rightarrow B$$

• В этом случае исходное вещество и продукт реакции являются *изомерами* (структурными или пространственными).

$$ext{CH}_3$$
-CH $_2$ -CH $_2$ -CH $_2$ -CH $_3$ $\xrightarrow{ ext{AlCl}_3,\ 100^{\circ}\text{C}}$ $\xrightarrow{ ext{CH}_3}$ CH $_3$ -CH-CH $_2$ -CH $_3$

Реакции окисления и восстановления

- Окислительно-восстановительные реакции реакции, в ходе которых меняется степень окисления атомов, входящих в молекулу. Для органических реакций этого типа применимы те же законы, что и для неорганических.
- Вещество окисляется, если оно теряет атомы Н и (или) приобретает атомы О. Кислородсодержащий окислитель обозначают символом [О]:

$$R-CH_2OH \xrightarrow{[O]} R-CHO \xrightarrow{[O]} R-COOH$$
 спирт альдегид кислота

• Вещество восстанавливается, если оно приобретает атомы Н и (или) теряет атомы О. Восстановитель обозначают символом [H]:

$$R-NO_2 \xrightarrow{6[H]} R-NH_2$$

2. Классификация реакций по числу частиц, участвующих в элементарной стадии

По этому признаку все реакции можно разделить на диссоциативные (мономолекулярные) и ассоциативные (бимолекулярные, тримолекулярные).

Мономолекулярные реакции – реакции, в которых участвует только одна молекула (частица):

$$A \rightarrow B + \dots$$

К этому типу относятся реакции распада и изомеризации.

Бимолекулярные реакции - реакции типа

 $A + B \rightarrow C + \dots$, в которых происходит столкновение двух молекул (частиц).

Это самый распространенный тип элементарных реакций.

Тримолекулярные реакции – реакции типа

 $2A + B \rightarrow C + \dots$, в которых происходит столкновение трех молекул.

3. Классификация реакций по механизму разрыва связей

- В зависимости от способа разрыва ковалентной связи в реагирующей молекуле органические реакции подразделяются на *радикальные* и *ионные реакции*.
- Ионные реакции в свою очередь делятся по характеру реагента, действующего на молекулу, на электрофильные и нуклеофильные.
- Разрыв ковалентной связи может происходить двумя способами, обратными механизмам ее образования.
- Разрыв связи, при котором каждый атом получает по одному электрону из общей пары, называется гомолитическим:

В результате гомолитического разрыва образуются частицы, каждая из которых имеет неспаренный электрон - *свободные* радикалы.

• Если при разрыве связи общая электронная пара остается у одного атома, то такой разрыв называется городов $A \ B \longrightarrow A^+ + B^-$

- В результате образуются разноименно заряженные ионы катион и анион. Если заряд иона сосредоточен на атоме углерода, то катион называют *карбокатионом*, а анион *карбанионом*.
 - Электрофильной называется реакция, в которой молекула органического вещества подвергается действию электрофильного реагента.
 - Электрофильные («любящие электроны») реагенты или электрофилы это частицы (катионы или молекулы), имеющие свободную орбиталь на внешнем электронном уровне.
 - Примеры электрофильных частиц: H⁺, CH₃⁺ и другие карбокатионы, NO₂⁺

- **Нуклеофильной** называется реакция, в которой молекула органического вещества подвергается действию нуклеофильного реагента.
- Нуклеофильные («любящие ядро») реагенты, или нуклеофилы это частицы (анионы или молекулы), имеющие неподеленную пару электронов на внешнем электроном уровне.
- Примеры нуклеофильных частиц: OH-, Cl-, Br-, CN-, H2O, CH3OH, NH3.
- Благодаря подвижности π-электронов, нуклеофильными свойствами обладают также молекулы, содержащие π-связи: CH₂=CH₂, CH₂=CH-CH=CH₂, C_EH_E

Изомерия органических соединений

• Изомерия – это явление существования отличающихся по свойствам химических соединений с одинаковым качественным и количественным составом и молекулярной массой, т. е. с одинаковой молекулярной формулой

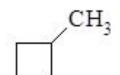
- Виды изомерии:
- 1. Структурная
- 2. Динамическая
- 3. Пространственная

1. Структурная изомерия

- Структурные изомеры это изомеры, имеющие разную структурную формулу, т. е. разный порядок соединения атомов в молекуле.
- Различное строение имеет следствием существенное отличие в физических и химических свойствах изомеров.
- Виды структурной изомерии:
- 1) Изомерия углеродного скелета
- 2) Изомерия положения заместителя и взаиморасположения функциональных групп
- 3) Метамерия

Изомерия углеродного скепета

пентан


2-метилбутан

2,2-диметилпропан

бутановая кислота

2-метилпропановая кислота

метилциклобутан

$$\triangle$$

циклопропан

Изомерия положения и взаиморасположения функциональных групп

2-нитронафталин

1-нитронафталин

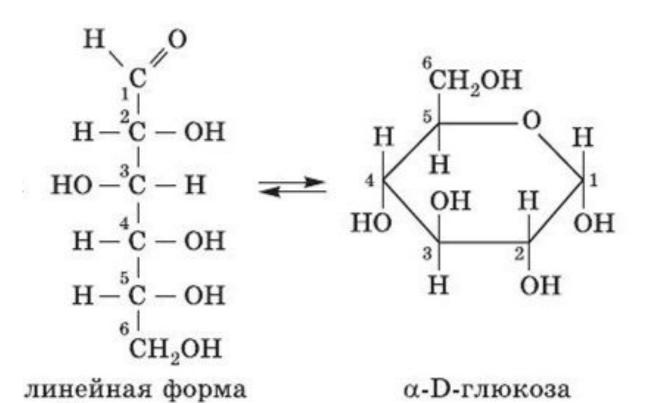
гидрохинон

Метамерия

- Метамерами называются изомеры, отличающиеся величиной углеводородных радикалов у одного и того же многовалентного атома. В качестве такого атома может быть кислород, сера, азот и др.
- Метамерия характерна для простых эфиров, аминов, гетероциклов и др. соединений.

2. Динамическая изомерия

• Таутомерия – явление равновесной динамической изомерии, при которой происходит быстрое обратимое самопроизвольное превращение структурных изомеров, сопровождаемое миграцией подвижной группы между двумя или несколькими центрами в молекуле.


- 1. Кето-енольная
- 2. Цикло-цепная

кетоформа енольнаяформа

этиловый эфир ацетоуксусной кислоты (кетонный таутомер) этиловый эфир
3-гидроксикротоновой кислоты
(енольный таутомер)

 $CH_3-C=CH-COOC_2H_5$

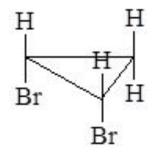
$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

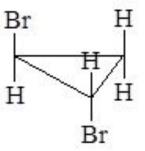
D-глюкозы

3. Пространственная изомерия

• Пространственные изомеры (стереоизомеры) – это вещества, имеющие одинаковую структурную формулу, т. е. одинаковый порядок соединения атомов молекуле, но различное их пространственное положение.

Виды:

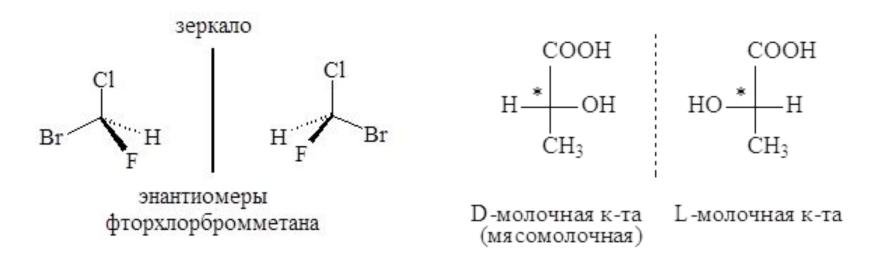

- Геометрическая
- Оптическая
- Конформационная


Геометрическая изомерия

• Геометрические изомеры отличаются пространственным расположением заместителей относительно связи (или системы связей), вращение вокруг которой невозможно или сильно затруднено и при обычных условиях не происходит.

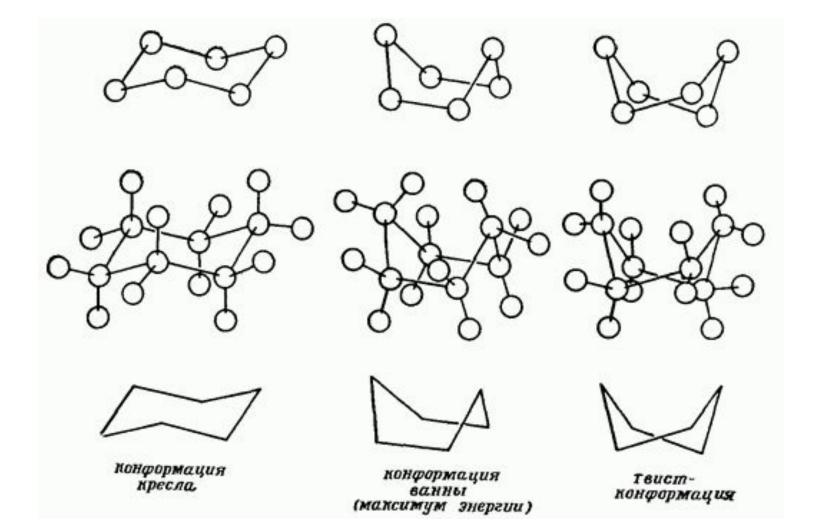
$$C = C$$
 $C + C$
 $C +$

$$^{-H_2C}$$
 $^{-H_3C}$ $^{-H_3C}$ $^{-H_3C}$ $^{-H_2}$ $^{-H_2}$ $^{-H_3C}$ $^{-H_2}$ $^{-H_3}$ $^{-H_3C}$ $^{-H_2}$ $^{-H_3}$ $^{-H_3}$


цис-1,2-дибромциклопропан

транс-1,2-дибромциклопропан

Оптическая изомерия


- В 1815 году французский физик Ж.Б. Био обнаружил, что некоторые природные органические вещества в жидком состоянии и в растворе проявляют особенные свойства: при пропускании через них луча плоскополяризованного света они отклоняют его плоскость поляризации на некоторый угол в одну или другую сторону.
- Это явление называют вращением плоскости поляризованного света, а вещества, обладающие такой способностью **оптически активными веществами**.
- В 1848 году французский химик и микробиолог Л. Пастер обнаружил различную оптическую активность у веществ, имеющих одну и ту же структурную формулу.

- Оптической активностью обладают соединения, в молекулах которых есть асимметрический атом.
- **Асимметрический атом углерода** это атом, связанный с четырьмя разными заместителями. В этом случае возможно два способа расположения заместителей по углам тетраэдра.
- При этом возникают две формы молекулы, которые нельзя совместить в пространстве и которые относятся друг к другу как предмет и его зеркальное отображение. Такие стереоизомеры называются энантиомерами

Конформационная изомерия

- Конформационная (поворотная) изомерия обусловлена вращением атомов или атомных групп вокруг одной или нескольких простых σ-связей.
- В результате вращения вокруг С–С-связей молекулы могут иметь различные пространственные формы, которые называют конформациями
- Молекула этана вследствие вращения вокруг углеродуглеродной связи может принимать бесконечное множество конформаций. Две крайние конформации называют заслоненной и заторможенной.

