ОСНОВЫ ТЕРМОДИНАМИКИ

- □ Термодинамика раздел физики в котором изучаются макроскопические системы и происходящие в них процессы с энергетической точки зрения, не учитывая их атомно-молекулярное строение.
- □ В термодинамике рассматриваются *две* формы передачи энергии системе:

энергия может быть передана в форме **теплоты и в форме работы**.

Энергия, теплота, работа

- □ Энергия единая количественная мера различных форм движения материи и соответствующих им взаимодействий. Энергия количественно характеризует систему с точки зрения возможных в ней превращений движения. Энергией система обладает всегда.
 - Энергия однозначная функция состояния: в данном состоянии она принимает одно вполне определённое значение.
- При переходе из одн**∮гаукостоян**и<u>я</u> ну друкое происходит изменение энергии:

Работа -

- процесс передачи энергии системе при воздействии на неё внешних сил.
- Работа совершается при изменении состояния системы.
- В отличие от энергии работа функция поцесса. Она зависит от того, каким способом система переходит из одного состояния в другое.
- При переходе из состояния 1 в состояние 2: $\int_{1}^{\infty} \delta A = A_{12}$ Сравнить с энергией: $A_{12} \neq A_{2} A_{1}$,

d — полный дифференциал; δ — неполный дифференциал.

Теплота -

- это энергия, передаваемая системе в процессе теплообмена с внешними телами.
- Теплота, как и работа, функция процесса.
 - При совершении над системой работы может меняться как внутренняя энергия системы, так и её внешняя механическая энергия.

При теплообмене изменяется только внутренняя энергия системы.

При переходе системы в процессе $_2$ теплообмена из состояния 1 в состояние 2: $\int \delta Q = Q_{12}$

Первый закон термодинамики

Изменение энергии системы происходит при сообщении ей теплоты Q и совершении <u>над системой</u> работы A':

$$\Delta W = Q + A'$$

W — полная энергия системы. Она состоит из кинетической энергии W_{κ}^{mex} механического движения системы как целого, её потенциальной энергии W_{n}^{gheu} во внешнем поле и внутренней энергии U. В термодинамике рассматриваются процессы при которых W_{κ}^{mex} и W_{n}^{gheu} не изменяются, поэтому эти виды энергии не рассматриваются. Работа над системой A' и работа самой системы A связаны:

$$A' = -A$$

С учётом этого:

$$\mathbf{Q} = \Delta \mathbf{U} + \mathbf{A}$$

Теплота, сообщаемая системе, расходуется на изменение внутренней энергии системы и на совершение системой работы против внешних сил.

В дифференциальной форме:

$$\delta \mathbf{Q} = dU + \delta A$$

 $\delta Q > 0$ - теплота подводится к системе;

 $\delta Q < 0$ - теплота отводится от системы.

Другая формулировка 1 начала термодинамики

Невозможен вечный двигатель 1-ого рода, то есть двигатель, который совершал бы работу в количестве большем, чем полученная извне энергия (невозможен к.п. д.>100%).

$$Q = \Delta U + A$$

$$\Delta U = \oint dU = 0, \qquad Q = A$$

A не может быть > Q

Внутренняя энергия системы

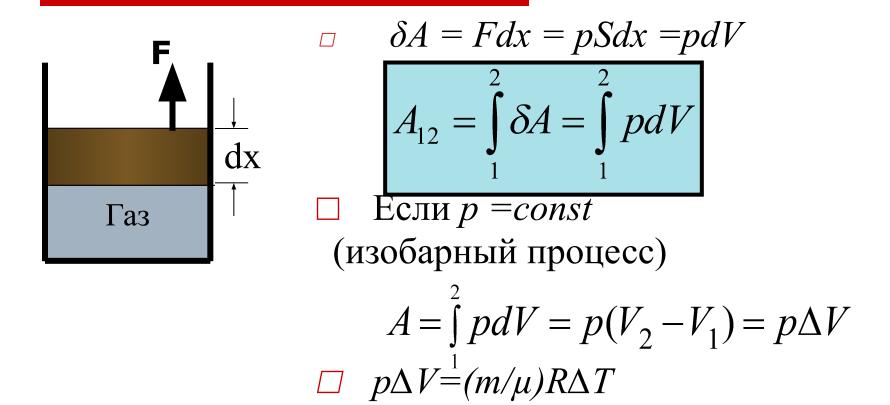
- \square <u>В общем случае</u> внутренняя энергия системы U состоит из :
- а) кинетической энергии теплового движения молекул;
 - б) потенциальной энергии их взаимодействия;
- в) внутриатомной энергии;
- 🛘 г) внутриядерной энергии.
 - В молекулярной физике энергии (в) и (г) не учитываются. Для идеального газа энергия (б) не учитывается.

Энергия одной молекулы с
$$i$$
 степенями свободы $< w> = i (kT/2)$

 \square Для произвольной массы газа m: $U = v N_A < w > 0$

$$U = \frac{i}{2} \cdot \frac{m}{\mu} N_A kT = \frac{i}{2} \cdot \frac{m}{\mu} RT$$

$$U = \frac{i}{2} \cdot \frac{m}{\mu} RT$$
 или $U = \frac{i}{2} \cdot PV$


Работа по изменению объёма газа

 δA>0 - система совершает работу над внешними телами;

 δA<0 - над системой совершают работу внешние силы.

$$A_{12} = \int_{1}^{2} \delta A$$

Рассчитаем работу по изменению объёма газа.

7 Если p=const, $(m/\mu)=1$ моль, $\Delta T=1$ К, то A=R.

Основы теории теплоёмкости газов

1. Основные понятия

Теплоемкость газа

$$C = \frac{\delta Q}{dT}$$

$$C = \frac{\delta \mathbf{Q}}{dT} \qquad C = \frac{Q}{\Delta T}$$

$$[C]$$
=Дж/К

Удельная теплоемкость

$$c_0 = \frac{\delta Q}{mdT}$$

$$c_0 = \frac{Q}{m\Delta T}$$

$$[c_0] = Дж/(кг·К)$$

Молярная теплоемкость

$$c = \frac{\delta Q}{vdT}$$

$$c = \frac{Q}{v\Delta T}$$

$$[c] = Дж/(моль · K)$$

$$c = \mu c_0$$

$$C = vc$$

2.
$$V = const$$
, $A = p\Delta V = 0$

$$Q_{v} = c_{v} v \Delta T$$
,

с другой стороны:

$$Q_{v} = \Delta U = (i/2)vR\Delta T$$

Теплоемкость моля идеального газа

при

постоянном объеме равна : $C_V = \frac{1}{2}R$

$$C_V = \frac{\iota}{2}R$$

p = const

$$\mathbf{Q}_p = c_p \, v \, \Delta T,$$
 с другой стороны:

$$Q_p = A + \Delta U = p\Delta V + (i/2)vR\Delta T =$$

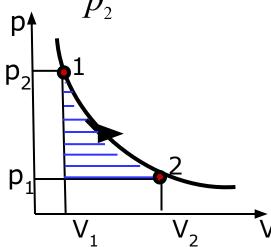
$$= vR\Delta T + (i/2)vR\Delta T = (1 + i/2)vR\Delta T$$

Молярная теплоёмкость при постоянном давлении равна:

$$c_p = (1 + \frac{i}{2})R$$
 или $c_p = \frac{i+2}{2}R$ $\mathbf{c}_p = \mathbf{R} + \mathbf{c}_v$ (уравнение Майера)

Применение I начала термодинамики $(Q = \Delta U + A)$ к изопроцессам

1. Изотермический процесс (T = const).

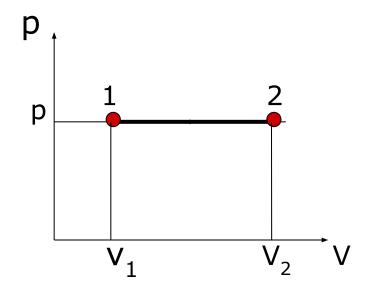

Внутренняя энергия идеального газа не изменяется,

$$\Delta U = (i/2)vR\Delta T = 0$$
 и $\mathbf{Q} = \mathbf{A}$

Рассчитаем работу при изотермическом процессе:

$$A = \int_{1}^{2} p dV = \int_{1}^{2} \frac{m}{\mu} RT \frac{dV}{V} = \frac{m}{\mu} RT \ln \frac{V_{2}}{V_{1}} = \frac{m}{\mu} RT \ln \frac{p_{1}}{p_{2}}$$

На графике работа равна площади заштрихованной фигуры


2.Изобарический процесс

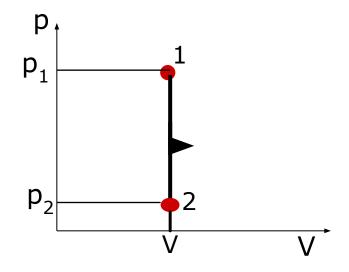
$$\mathbf{Q} = \Delta \mathbf{U} + \mathbf{A}$$

$$\square \quad \mathbf{Q} = \mathbf{c}_{\mathbf{p}} \mathbf{v} \Delta \mathbf{T}$$

$$\square$$
 $\Delta U = (i/2)vR\Delta T$

$$\square$$
 $A = p\Delta V = vR\Delta T$

Графически работа определяется площадью заштрихованной фигуры.


3. Изохорический процесс

$$V = const$$

$$A = \int pdV = 0$$

$$Q = \Delta U$$

$$Q = \Delta U = c_v \Delta T = (i/2)vR\Delta T$$

4. Адиабатический процесс

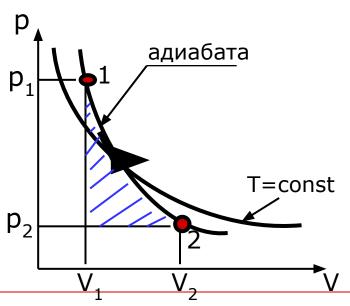
- □ Адиабатным (адиабатическим) называется процесс, происходящий в термодинамической системе без теплообмена с окружающими телами.
 - Необходимое и достаточное условие адиабатного процесса:

$$\delta Q = 0$$

I начало термодинамики для адиабатного процесса:

$$\Delta U = -A$$

Уравнение адиабатного процесса имеет вид:

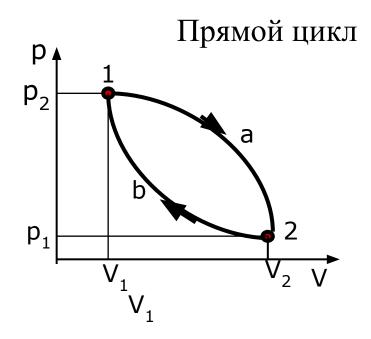

$$p_1V_1^{\gamma}=p_2V_2^{\gamma}$$
 или $pV^{\gamma}=const$ уравнение Пуассона

$$\gamma = c_p / c_V = (i+2) / i$$

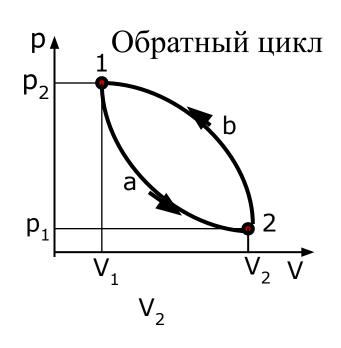
Адиабатический процесс (продолжение)

$$\Box \Delta U = (i/2)vR\Delta T$$

$$= \frac{1}{1-\gamma} (p_2 V_2 - p_1 V_1)$$


Обратимые и необратимые процессы

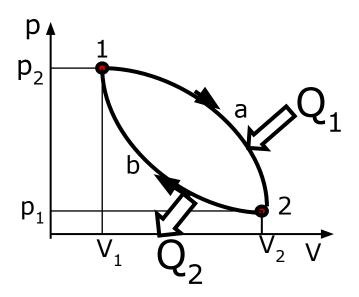
- Обратимыми называются процессы, которые предполагают возможность возвращения системы в исходное состояние без каких-либо изменений в окружающей среде.
- Необратимые процессы в одном направлении протекают самопроизвольно, а для протекания в обратном направлении требуют внешних затрат (необходим «компенсирующий процесс»).
- Все процессы, протекающие при конечных разностях температур или при наличии сил трения, являются необратимыми. Т.об., все реальные


процессы являются необратимыми.

Круговые процессы

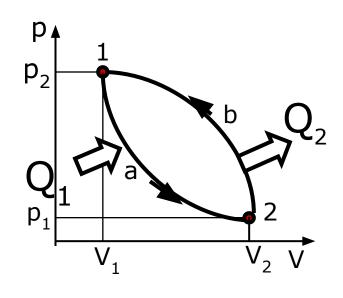
Если тело из состояния 1 переводится в состояние 2, а затем через другие промежуточные состояния возвращается в состояние 1, то совершается круговой процесс или цикл.

$$A = A_{1a2} - A_{2B1} > 0$$



$$A = A_{1a2} - A_{2B1} < 0$$

$\mathbf{Q} = \Delta \mathbf{U} + \mathbf{A}$


 $\Delta U=0$

Прямой цикл

$$A = Q_1 - Q_2 > 0$$
 $Q_1 > Q_2$

Обратный цикл

$$A = Q_1 - Q_2 < 0$$
 $Q_1 < Q_2$

К.п.д. тепловой машины

 \square *К.п.д. тепловой машины* (η) - это отношение совершаемой за цикл работы А к получаемой за цикл теплоте \mathbb{Q}_1 .

$$\eta = \frac{A}{Q_1} \qquad \eta = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1}$$

Второе начало термодинамики

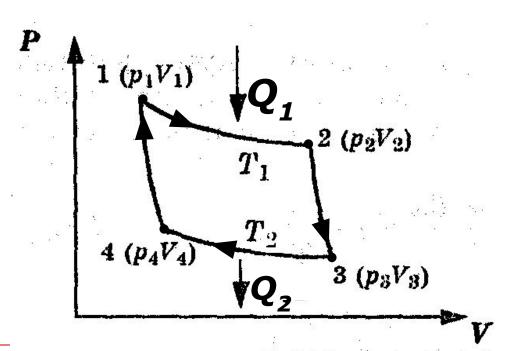
- Клаузиус: не возможен процесс, единственным результатом которого был бы переход теплоты от холодного тела к нагретому.
- Томсон: Невозможен такой периодический процесс, единственным результатом которого было бы получение работы за счёт теплоты, взятой от одного источника.

Второе начало термодинамики

(продолжение)

Невозможен вечный двигатель второго рода (перпетуум мобиле второго рода), т.е. двигатель, полностью превращающий работу всю полученную извне теплоту (имеющий к.п.д. 100 %).

Цикл Карно


Сади Карно установил, что наибольший к.п.д. имеет процесс, состоящий из двух изотерм и двух адиабат.

$$1 \rightarrow 2 \quad T_1 = const$$

$$2 \rightarrow 3 \quad \delta Q = 0$$

$$3 \rightarrow 4 \quad T_2 = const$$

$$4 \rightarrow 1 \quad \delta Q = 0$$

Цикл Карно (продолжение)

К.п.д. цикла Карно

$$\eta = \frac{Q_1 - Q_2}{Q_1} = \frac{A_{12} - A_{34}}{A_{12}}$$

$$A = \frac{m}{\mu} RT \ln \frac{V_2}{V_1}$$

$$\frac{V_2}{V_1} = \frac{V_3}{V_4}$$

$$\eta = \frac{T_1 - T_2}{T_1} = 1 - \frac{T_2}{T_1}$$

$$\eta_{neo6} < \frac{T_1 - T_2}{T_1} < 1 - \frac{T_2}{T_1}$$

$$\eta \leq \frac{T_1 - T_2}{T_1} \leq 1 - \frac{T_2}{T_1}$$

одна из математических формулировок II начала термодинамики, или:

$$\frac{Q_1 - Q_2}{Q_1} \le \frac{T_1 - T_2}{T_1}$$

Приведенное количество

теплоты

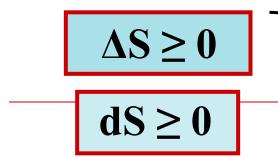
Отношение количества теплоты Q, полученной или отданной системой (телом) при изотермическом процессе к температуре Т этого процесса называется приведенным количеством теплоты:

$$\mathbf{Q^*} = \frac{\mathbf{Q}}{T}$$

Для произвольного процесса

$$d Q^* = \frac{\delta Q}{T} \qquad Q^* = \int \frac{\delta Q}{T}$$

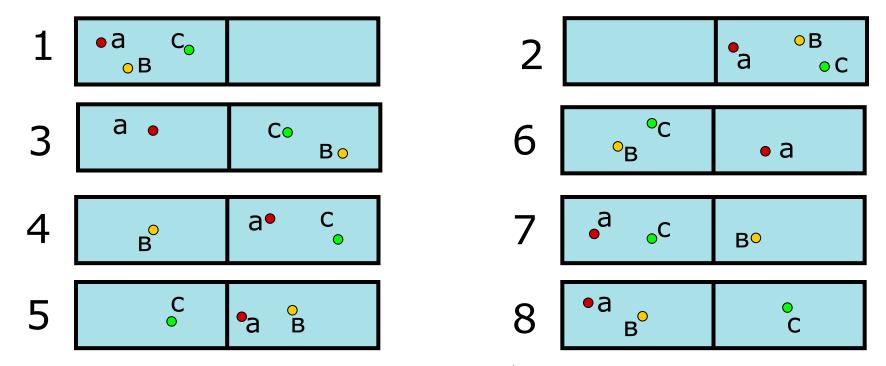
При нагревании тела $Q^* > 0$


$$Q^* < 0$$

Для обратимого цикла Карно

$$\mathbf{Q}^* = \oint \frac{\delta \mathbf{Q}}{T} = 0$$
, так как $\mathbf{Q}^* = \frac{\mathbf{Q}_1}{T_1} - \frac{\mathbf{Q}_2}{T_2} = 0$

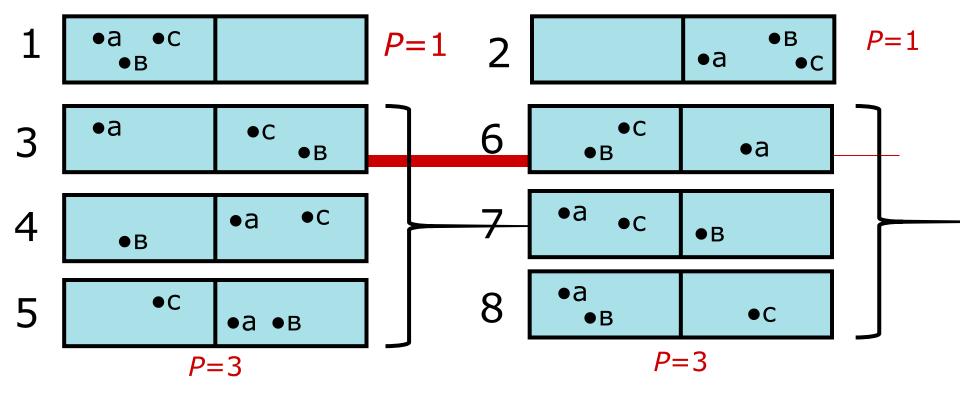
Интеграл $\oint \frac{\partial \mathbf{Q}}{T}$ выражает изменение некоторой функции состояния тела, названной Клаузиусом энтропией тела и обозначаемой S.


- □ Энтропия функция состояния системы
- \square Изменение энтропии $dS = \frac{\partial Q}{T}$
- При переходе системы из состояния 1 в состояние 2: $S_2 S_1 = \int_1^2 \frac{\delta Q}{T}$
- □ Энтропия системы тел равна сумме энтропий тел, входящих в систему
- □ Энтропия изолированной системы при любых происходящих в ней процессах не может убывать:

ещё одна математическая

формулировка II начала термодинамики

Статистический смысл II начала термодинамики



 \square Вероятностью микрораспределения w называют $w = \lim(\Delta t/t),$

где Δt - время наблюдения данного микрораспределения;

t - время наблюдения за системой.

$$w = 1/8$$

Термодинамическая вероятность состояния Р

показывает сколькими возможными микрораспределениями осуществляется данное состояние системы

$$W=P\cdot w$$
, $W=P\cdot (1/8)$

W — вероятность какого-либо состояния системы

Больцман постулировал, что между

энтропией и термодинамической вероятностью существует связь:

$$S = k \ln P$$

где *k* –постоянная Больцмана,

P - термодинамическая вероятность.

Для замкнутой системы $W \sim P$, поэтому:

$$S \sim k \ln W$$

Для любых процессов в замкнутой системе:

 $\Delta W > 0$, следовательно и $\Delta S > 0$.

Статистический смысл второго начала термодинамики

- □ Закон возрастания энтропии выражает постоянную тенденцию системы к переходу в более вероятное состояние.
- Чем из меньшего числа частиц состоит система, тем более вероятны отступления от второго начала термодинамики (флуктуации).
- □ Процессы, невозможные по второму закону, в статистической физике являются не невозможными, а только очень мало вероятными.

Границы применимости II начала термодинамики

- □ II начало термодинамики выполняется тем более точно, чем из большего числа частиц состоит система;
- □ II начало термодинамики применимо для замкнутых систем.