Локальные и глобальные сети ЭВМ

Литература

- Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы. 3-е издание. СПб: «Питер», 2006.
- □ Таненбаум Э. Компьютерные сети. 4-е издание. СПб.: Питер, 2004.
- Олифер В.Г., Олифер Н.А. Сетевые операционные системы. СПб: «Питер», 2001.

Что такое сеть? (Историческая справка)

- В 50-х компьютеры предназначались для небольшого числа пользователей, работали в режиме пакетной обработки.
- □ Отправная точка начало 60-х, когда началось использование мэйнфреймов, к которым подключены несколько терминалов (dumb, «неинтеллектуальных»), позднее удаленных терминалов.

Хронологически первыми появились глобальные сети: решалась задача реализации соединений «компьютеркомпьютер» для соединения супер-ЭВМ между собой на базе уже имеющихся каналов связи. Прогресс глобальных сетей тесно связан с прогрессом телефонных сетей.

□ Первые ЛВС (70-е, начало 80-е) использовали одиночные линии связи (телефонные провода) для соединения 2 компьютеров. Затем ЛВС (собственно LAN в современном понимании) строились на принципе использования общего кабеля с одной точкой подключения. ЛВС территориально располагались в одном или нескольких близлежащих зданиях.

□ В конце 80-х ЛВС и ГВС отличались весьма отчетливо протяженностью и качеством линий связи, сложностью методов передачи данных, скоростью обмена данными, разнообразием услуг, масштабируемостью. С конца 90-х происходит сближение ЛВС и ГВС, «оформляются» сети мегаполисов (со своими протоколами; напр. SMDS -Switched Multimegabit Data Services).

- Сейчас происходит конвергенция компьютерных и телекоммуникационных сетей по различным направлениям:
 - сближение видов услуг,
 - технологическое сближение на основе цифровой передачи информации.

Определение сети ЭВМ

(вычислительная сеть) – аппаратнокомпьютерная программный комплекс, представляющий собой группу вычислительных машин (компьютеров), соединенных между собой специальной аппаратуры, ПОМОЩИ при обеспечивающей передачу данных, предназначенный для

- территориального распределения вычислительных ресурсов,
- совместного использования программных и аппаратных ресурсов,
- обмена информацией между компьютерами данной группы.

Основные задачи сети ЭВМ

кто и для чего использует сеть ЭВМ?

Сети для организаций

- разделение и управление ресурсами предприятия
- экономичное расширение сети на основе ПК
- использование сетевого
 программного обеспечения
 (groupware групповое программное
 обеспечение)

Сети для организаций

- создание рабочих групп
- централизованное управление
- защита информации
- повышение отказоустойчивости
- доступ к нескольким операционным системам

Сети для организаций

- повышение надежности функционирования предприятия за счет оперативности управления и использования имеющихся ресурсов
- повышение экономической эффективности
- □ средство общения и связи
- подготовка персонала

Сети для индивидуальных пользователей

- доступ к удаленной информации (news, WWW)
- передача деловой информации
 (открытие счетов, перечисление денег, заключение договоров)
- общение с другими людьми (news, e-mail, video conference)
- □ обучение
- развлечение

Социальное влияние

- □ сеть не знает государственных границ
- сеть не знает цензуры проблемы морали и нравственности
- использование ресурсов организации в личных целях
- □ нанесение ущерба репутации людей
- анонимки
- паркотики

Проблемы, возникающие при создании сети

- Проблемы физической совместимости аппаратных средств (сетевых интерфейсных плат и др.; решение стандартизация).
- Представление информации.
- □ Ошибки при передаче данных.
- □ Конфликты в сети.
- Сложность сетевого программирования и создания сетевого программного обеспечения.
- □ Проблемы обеспечения безопасности.

Уровни ошибок:

- телефонная сеть − 10⁻⁴ − 10⁻⁵;
- □ спутниковый канал 10⁻⁶;
- □ медь (витая пара, коаксиальный кабель) 10⁻⁹;
- □ оптоволокно 10⁻¹⁰.

Тенденции развития сетей

- □ Корпоративные сети.
- Высокопроизводительные сети.
- □ Мобильные сети.
- 🛘 intranet-сети.

Типы вычислительных сетей

- По масштабу вычислительной сети выделяют:
- LAN (Local Area Network) локальная вычислительная сеть, ЛВС

MAN (Metropolitan Area Network) — городская сеть

□ WAN (Wide Area Network) — глобальная вычислительная сеть, ГВС

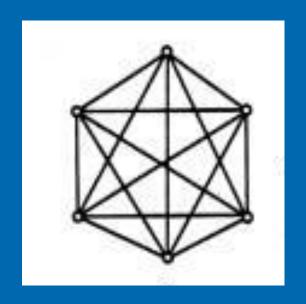
Классификация многопроцессорных систем по размеру

Interprocessor distance	Processors located in same	Example
1 m	Square meter	Personal area network
10 m	Room	
100 m	Building	Local area network
1 km	Campus	
10 km	City	Metropolitan area network
100 km	Country	
1000 km	Continent	Wide area network
10,000 km	Planet	The Internet
		-

Типы вычислительных сетей

- По статусу отдельных узлов вычислительной сети выделяют:
- □ Одноранговые сети все узлы (компьютеры) равноправны.
- □ Серверные сети с выделенным сервером.
 Функции сервера (центрального компьютера)
 может выполнять специальный мощный или обычный персональный компьютер (ПК). При этом остальные компьютеры (чаще всего обычные ПК) называют рабочими станциями или клиентами.

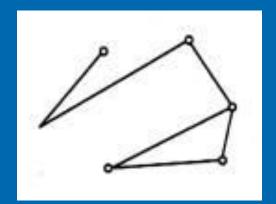
Основные программные и аппаратные компоненты сети

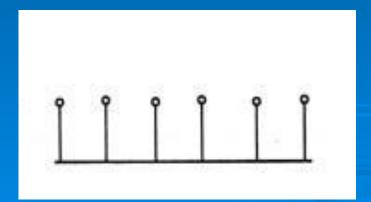


Топология физических связей

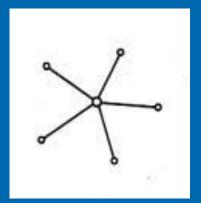
Под топологией вычислительной сети понимается конфигурация графа, вершинам которого соответствуют компьютеры сети (иногда и другое оборудование, например концентраторы), а ребрам − физические (или логические) связи между ними.

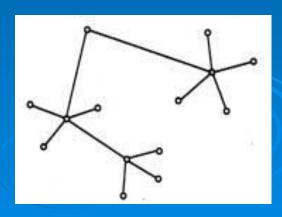
- Конфигурация физических связей определяется электрическими соединениями компьютеров между собой и может отличаться от конфигурации логических связей между узлами сети.
- Логические связи представляют собой маршруты передачи данных между узлами сети и образуются путем соответствующей настройки коммуникационного оборудования.


Полносвязная топология

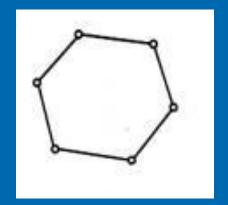

Неполносвязные топологии -

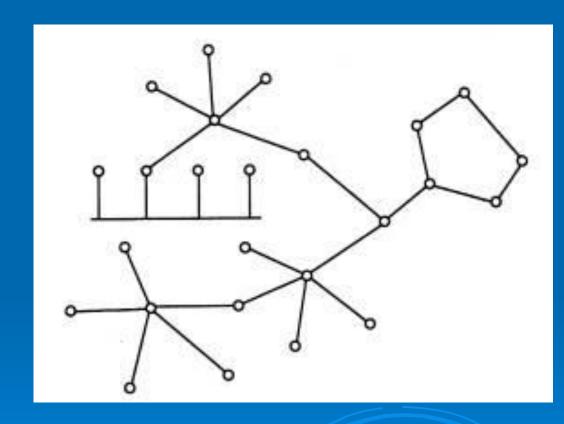
для обмена данными между двумя компьютерами может потребоваться промежуточная передача данных через другие узлы сети.


Ячеистая (mesh) топология


Общая шина (моноканал)

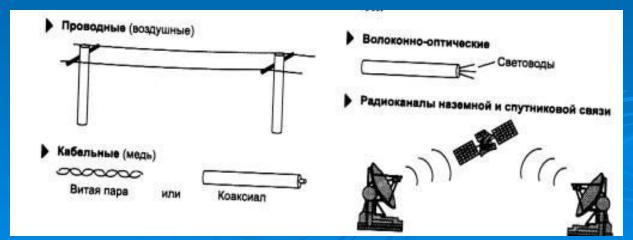
Топология звезда (снежинка)

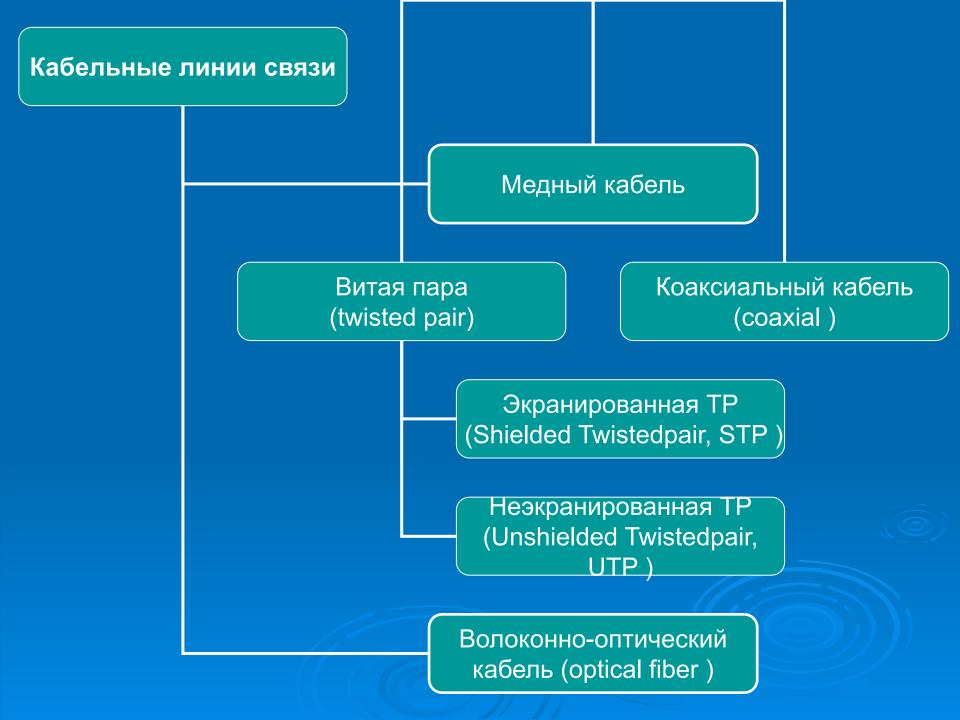



Иерархическая звезда (дерево)

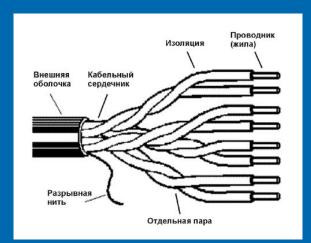
Кольцевая топология

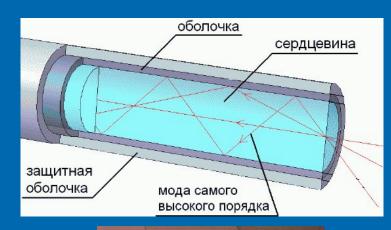
Смешанная топология

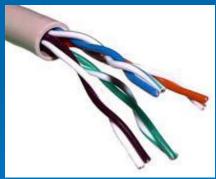



Типы линий связи

Линия связи состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи данных и промежуточной аппаратуры. Синонимом термина линия связи (line) является термин канал связи(channel).


- Физическая среда передачи данных (medium) может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.
- В зависимости от среды передачи данных линии связи разделяются на следующие:
- □ проводные (воздушные);
- □ кабельные;
- □ радиоканалы наземной и спутниковой связи.




Витая пара

Коаксиальный Оптоволоконный кабель кабель

Для **подключения компьютера** к сети может использоваться:

- сетевая плата (сетевая карта, сетевой адаптер), подключающая его к специальной кабельной линии для передачи сигналов в цифровом двоичном коде (каждая карта имеет уникальный 48-битовый адрес);
- модем (модулятор-демодулятор), подключающая его к телефонной линии.
 Здесь цифровые данные компьютеры преобразуются в непрерывные электрические импульсы (модулируются), передаются по телефонным каналам, а после приема снова преобразуются в цифровой двоичный код (демодулируются).

Адресация компьютеров

Требования к адресу компьютера в сети:

- Адрес должен уникально идентифицировать компьютер в сети любого масштаба.
- Схема назначения адресов должна сводить к минимуму ручной труд администратора и вероятность дублирования адресов.
- Адрес должен иметь иерархическую структуру, удобную для построения больших сетей.
- Адрес должен быть удобен для пользователей сети, а это значит, что он должен иметь символьное представление.
- Адрес должен иметь по возможности компактное представление, чтобы не перегружать память коммуникационной аппаратуры сетевых адаптеров, маршрутизаторов и т. п.

Схемы адресации узлов сети

- □ Аппаратные (hardware) адреса. например 0081005e24a8.
- □ Символьные адреса или имена.
 например ftp-archl.ucl.ac.uk.
- □ Числовые составные адреса. например 126.100.0.0.

<u>Проблема установления соответствия</u> между адресами различных типов.

Служба разрешения имен

Централизованная Domain Name System (DNS) сети Internet.

Распределенная

используется только в небольших локальных сетях

Коммуникационное оборудование

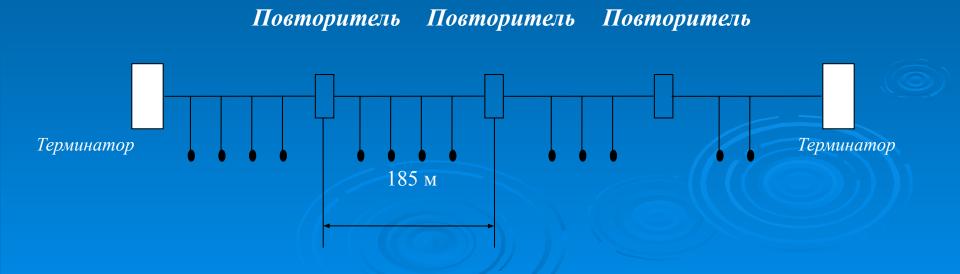
Сложные сетевые структуры *снимают* ограничения на

- диаметр сети,
- число включаемых в сеть узлов,
- используемые сетевые технологии,

но требуют дополнительного коммуникационного оборудования:

- □Оборудование физического структурирования сетей
- □Оборудование логического структурирования сетей

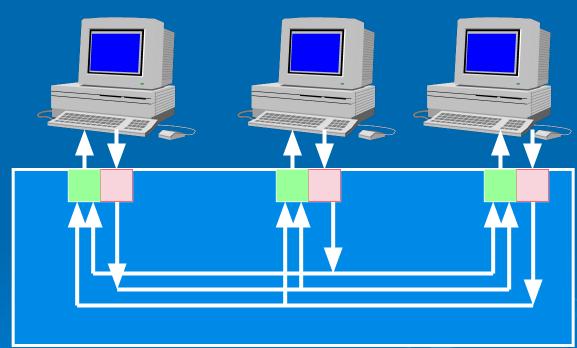
физического и канального уровней локальных сетей


- *Сетевые адаптеры* обеспечивают сопряжение узлов сети (компьютеров) с линиями связи.
- *Повторители* (repeaters)
- *Концентраторы* (hubs) центральными узлы обмена информацией между несколькими конечными станциями сети сегмента сети.
- *Мосты* (bridges) локализуют трафик внутри сегментов сетей.
- **■** *Коммутаторы* (switching)
- Шлюзы

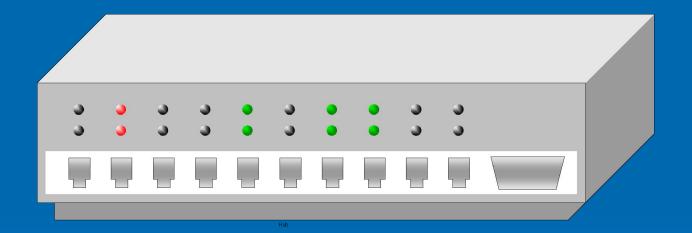
Средства физической структуризации

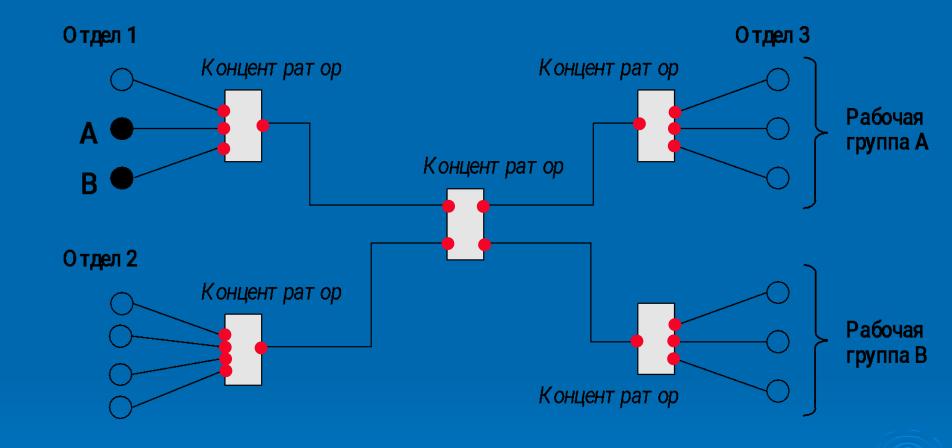
Повторитель (repeater) -

Устройство, которые на физическом уровне повторяет электрические сигналы (и, как правило, улучшает электрические характеристики: форму импульса, мощность), пришедшие на вход одного из портов на всех остальных портах (Ethernet).


Используются для удлинения каналов связи в сети.

Концентратор (hub, concentrator) -


• многопортовый повторитель, повторяет сигнал, улучшая его, на всех остальных портах, либо на следующем порту.


Концентратор Ethernet

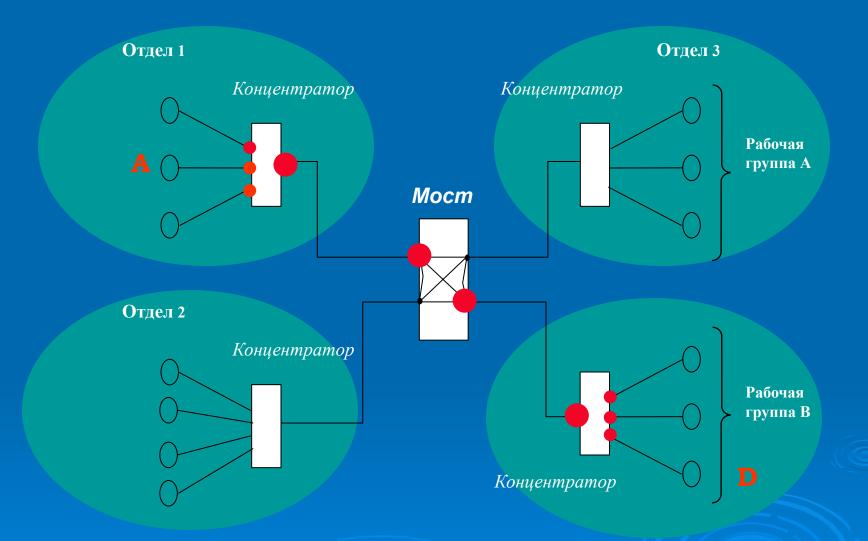
Концентратор = повторитель + дополнительные функции

-Внешний вид концентратора

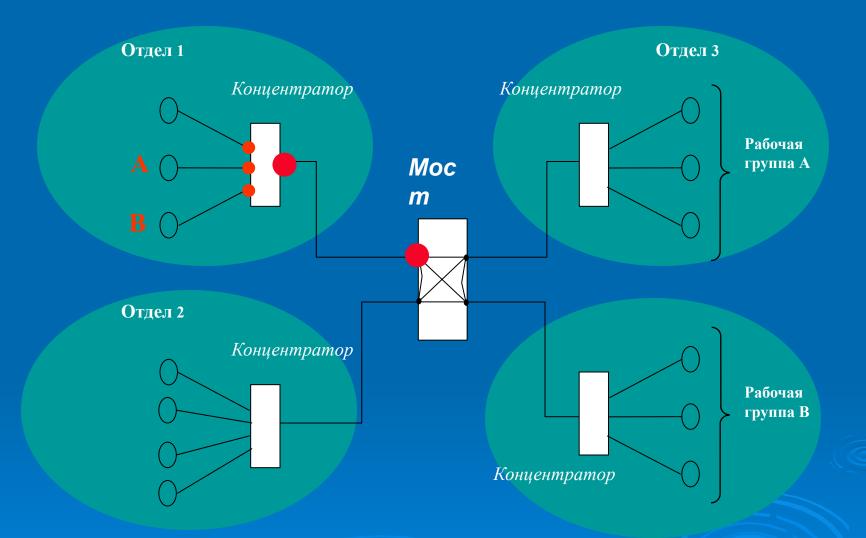
в результате физической структуризации логическая структура не изменилась

Логическая структуризация локальных сетей

Преимущества деления сетей на подсети и сегменты:

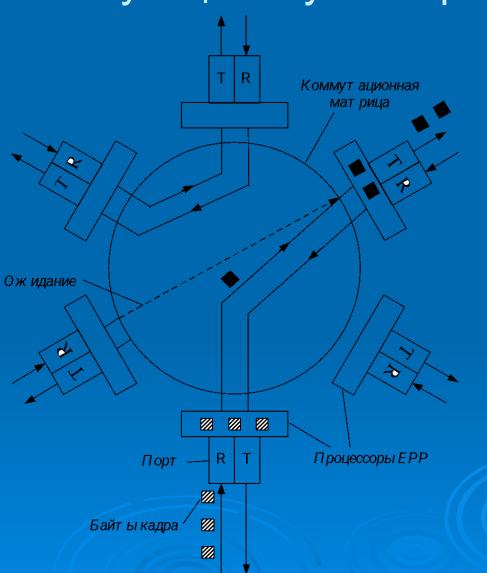

- □ Сегментация уменьшает общий сетевой трафик.
- 🛮 Подсети увеличивают гибкость сети.
- 🛮 Подсети повышают безопасность данных.
- 🛮 Подсети упрощают управление сетью.

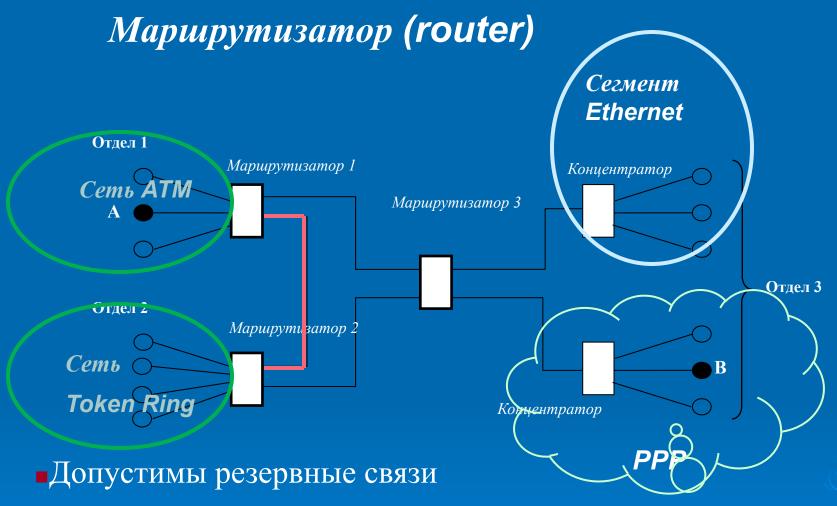
Средства логической структуризации


Mocm (bridge)

изолирует трафик одной части сети от другой, анализирует числовой адрес пакета и передает его на один соответствующий порт.

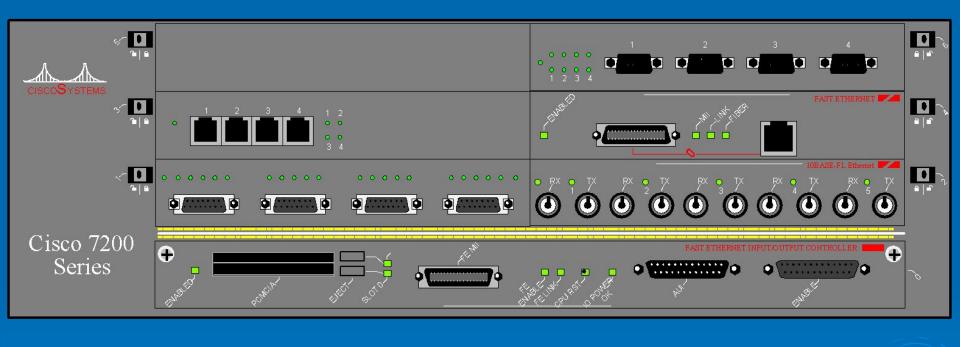
Передача данных от узла A узлу D


Передача данных от узла А узлу В



Kommymamop (switch)

Функционально подобен мосту, но обрабатывает кадры в параллельном режиме, работает со скоростью провода.


Передача кадров через коммутационную матрицу

- Поддерживает адресацию в глобальном масштабе
- Решает проблему выбора маршрута следования пакета.
- Объединяет подсети различных технологий

Передняя панель маршрутизатора Cisco 7206

- Сетевой протокол набор правил для связи между компьютерами, который управляет форматом, временными интервалами, последовательностью работы и контролем ошибок.
- Независимо от внутренней конструкции каждого конкретного протокола, все они имеют определенные общие функции и свойства:
- □ Инициализация связи.
- □ Отправка и получение данных.
- □ Завершение обмена.