
Температура. Тепловое равновесие. Определение температуры.

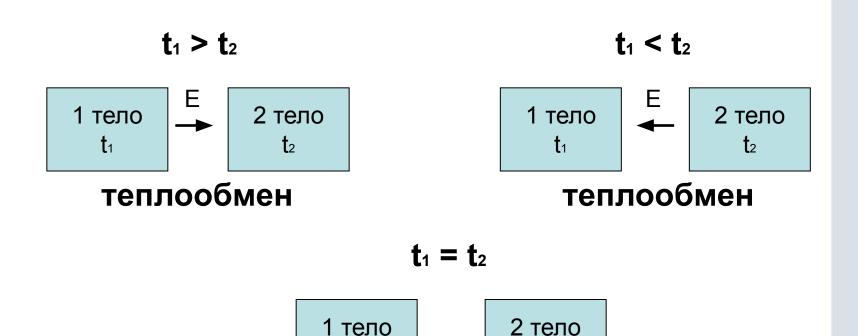
Простейшей моделью молекулярно-кинетической теории является модель идеального газа.

Задача молекулярно-кинетической теории состоит в том, чтобы установить связь между микроскопическими (масса, скорость, кинетическая энергия молекул) и макроскопическими параметрами (давление, объем, температура).

Макроскопические параметры – величины, характеризующие состояние макроскопических тел без учета молекулярного строения тел.

V, p, t

Температура характеризует степень нагретости тела (холодное, теплое,


Любое макроскопическое тело или система макроскопических тел при неизменных внешних условиях самопроизвольно переходит в состояние теплового равновесия.

Тепловое равновесие — состояние, при котором все макроскопические параметры сколь угодно долго остаются неизменными.

V, p, t – const

Все тела, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.

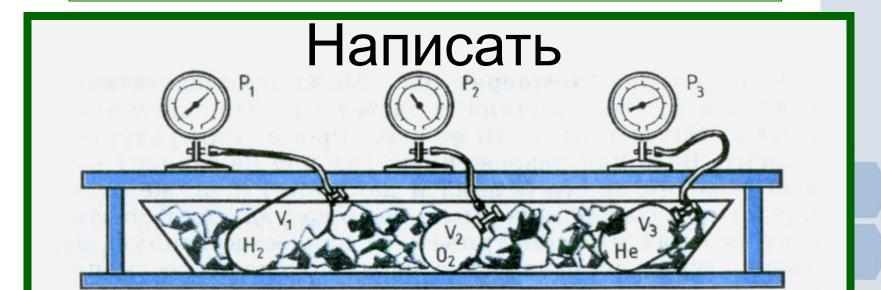
тепловое равновесие

 t_2

при тепловом равновесии именно срефнис кинетические энергии молекул всех газов одинаковы

$$p = \frac{2}{3}n\overline{E} = \frac{2}{3}\frac{N}{V}\overline{E}$$

$$p = \frac{2}{3}n\overline{E} = \frac{2}{3}\frac{N}{V}\overline{E}$$


$$\frac{pV}{N} = \frac{2}{3}\overline{E}$$

$$N = \frac{m}{M} \cdot N_A$$

водород

кислород

гелий

$$\frac{pV}{N} = \Theta_0 = 3,76 \cdot 10^{-21}$$
Дж

$$\frac{pV}{N} = \Theta_{100} = 5,14 \cdot 10^{-21}$$
Дж

- температура в энергетических единицах

$$\Theta = kT$$

Т- температура в градусах Кельвина (абсолютная температура) k- коэффициент пропорциональности, постоянная Больцмана.

$$\Theta_{100} - \Theta_0 = kT_2 - kT_1 = k(T_2 - T_1)$$

$$\Theta_{100} - \Theta_0 = kT_2 - kT_1 = k(T_2 - T_1)$$

$$\underline{k} = \frac{\Theta_{100} - \Theta_0}{T_2 - T_1} =$$

$$=\frac{(5,14-3,76)\cdot 10^{-21} \, \mathcal{J}_{\mathcal{H}C}}{100 \, K} =$$

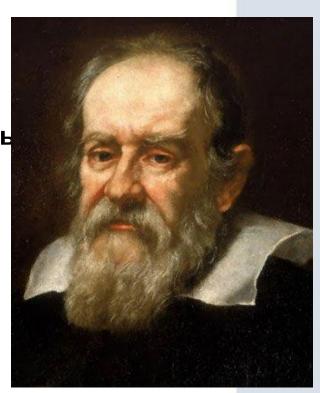
$$=1,38\cdot10^{-23}\frac{\mathcal{A}\mathcal{H}}{K}$$

Постоянная Больцмана связывает температуру в энергетических единицах с температурой в Кельвинах.

$$\frac{PV}{N} = \frac{2}{3}\overline{E} = \Theta = kT$$

$$\frac{2}{3}\overline{E} = kT$$

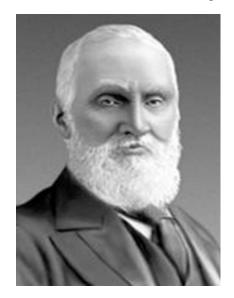
$$\overline{E} = \frac{3}{2}kT$$


температура – мера $=\frac{3}{2}kT$ средней кинетической

энергии молекул.

Для измерения температуры был создан **термометр.**

- В 1597 г. Галилео Галилей придумал первы прибор для наблюдений за изменением температуры (термоскоп)
- В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учёными.
- Постоянные точки термометра были установлены в 18 веке.

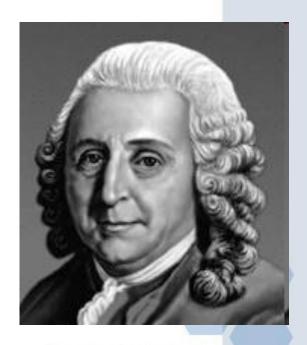


- В 1714 г. голландский учёный Д. Фаренгейт изготовил ртутный термометр.
- В 1730 г. французский физик Р. Реомюр предложил спиртовой термометр.
- В 1848 г. английский физик Вильям Томсон (лорд Кельвин) доказал возможность создания абсолютной шкалы температур.

Р. Реомюр

лорд Кельвин

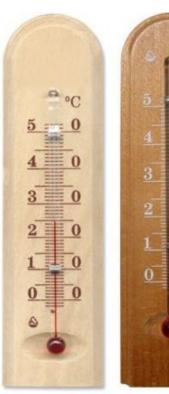
создатели-шкалы-Цельсия

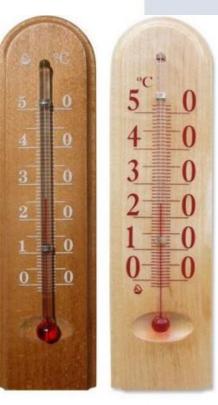


Шведский ученый

Андерс Цельсий

Шведский естествоиспытатель Карл Линней





Любопытно, что

...на самом деле шведский астроном и физик Цельсий предложил шкалу, в которой точка кипения воды была обозначена числом 0, а точка плавления льда числом 100. Несколько позднее шкале Цельсия придал современный вид его соотечественник Штрёмер.

Абсолютный нуль температуры –

предельная температура, при которой давление газа обращается в нуль при V – const или объем идеального газа стремится к нулю при р – const.

«Это самая низкая температура в природе, та наибольшая или последняя степень холода»

М.В.Ломоносов

Абсолютная шкала температур — шкала Кельвина.

T — термодинамическая температура.

[Т] = К (кельвин)

Фаренгейт	Цельсій	Кельвіі
212	100	373
194	90	363
176	80	353
158	70	343
140	60	333
122	50	323
104	40	313
86	30	303
68	20	293
50	10	283
32	0	273
14	-10	263
-4	-20	253
-22	-30	243
-40	-40	233
-58	-50	223
-76	-60	213
-94	-70	203
-112	-80	193
-130	-90	183
-148	-100	173

Точка кипения воды

Средняя комнатная температура
Точка таяния льда

Самая низкая температура, Антарктида1983 год

Нарисовать

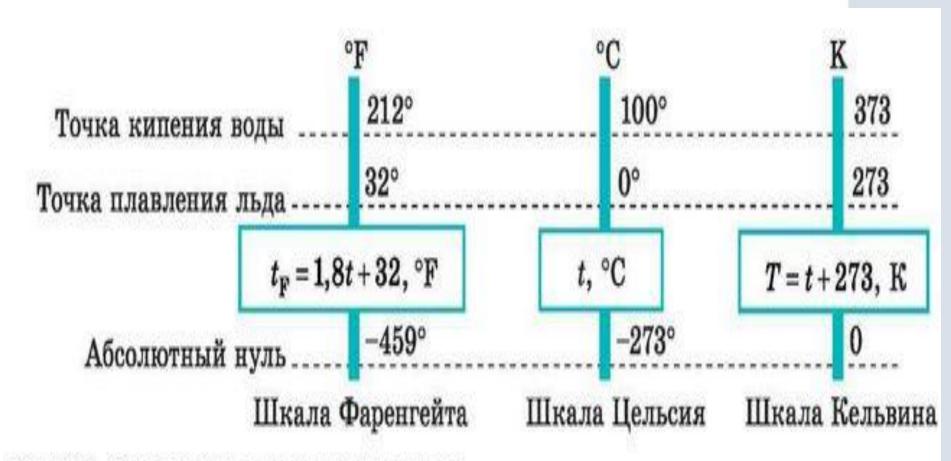


Рис. 29.1. Современные температурные шкалы

Зависимость давления газа от концентрации его молекул и температуры.

$$p = nkT$$

$$p = \frac{N}{V}kT$$

Решать

- Какова концентрация молекул газа при нормальных условиях? (температура 0°С и давление 100кПа)
 - 2. Какова энергия теплового движения молекулы кислорода при температурах 60°С и молекулы азота при 60°С?

TECT

- 1 При понижении температуры газа в запаянном сосуде давление газа уменьшается. Это уменьшение давления объясняется тем, что
 - 1) уменьшается объем сосуда за счет остывания его стенок
 - 2) уменьшается энергия теплового движения молекул газа
 - 3) уменьшаются размеры молекул газа при его охлаждении
 - 4) уменьшается энергия взаимодействия молекул газа друг с другом
- 2В комнате в одном сосуде находится водород, а в другом азот. Средние значения кинетической энергии поступательного теплового движения молекул водорода и молекул азота одинаковы в том случае, если у этих газов одинаковы значения
 - давления
 - количества вещества
 - 3) плотности
 - 4) температуры