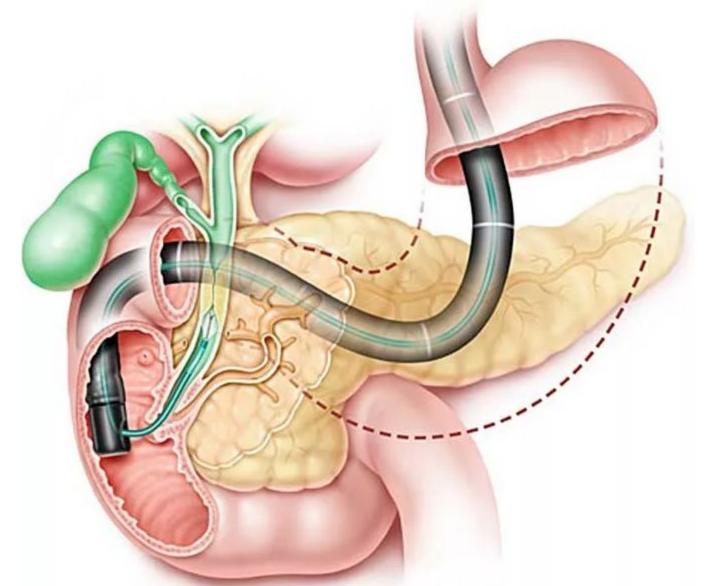
Анатомо-физиологические особенности больших пищеварительных желез


План лекции

- 1. Методы обследования пищеварительных желез, их соков.
- 2. Большие слюнные железы: околоушные, поднижнечелюстные, подъязычные строение, места открытия выводных протоков, секрет слюнных желез.
- 3. Слюна состав, свойства, функции.
- 4. Пищеварение в полости рта, глотание.
- 5. Пищеварение в желудке. Желудочный сок свойства, состав. Эвакуация содержимого желудка в тонкий кишечник.
- 6. Поджелудочная железа расположение, строение, функции.
- 7. Состав, количество, функции поджелудочного сока.
- 8. Печень расположение, границы, макро- и микроскопическое строение, функции.
- 9. Кровоснабжение печени, ее сосуды.
- 10. Желчный пузырь расположение, строение, функции.
- 11. Состав и свойства желчи. Функции желчи.
- 12. Механизм образования и отделения желчи, виды желчи (пузырная, печеночная).
- 13. Пищеварение и всасывание в тонком кишечнике, виды. Кишечный сок- свойства, состав, функции.
- 14. Пищеварение в толстой кишке. Микрофлора толстого кишечника, её значение. Акт дефекации.

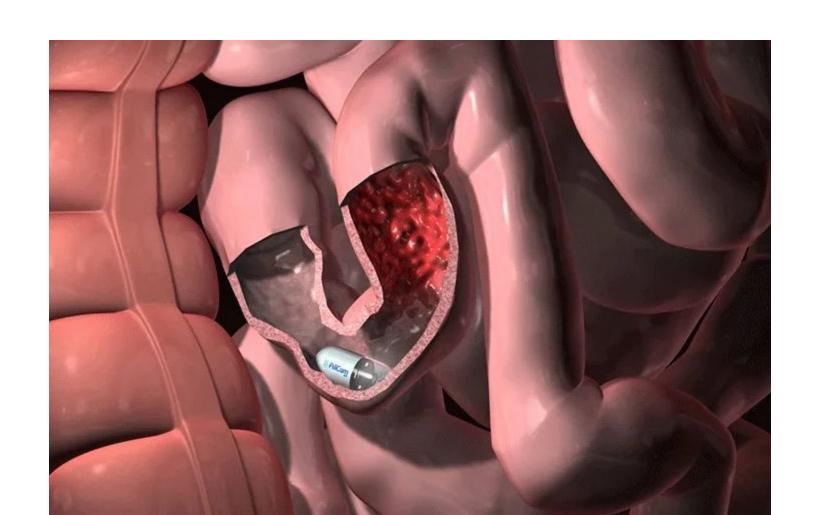
Методы обследования пищеварительных желез и их соков

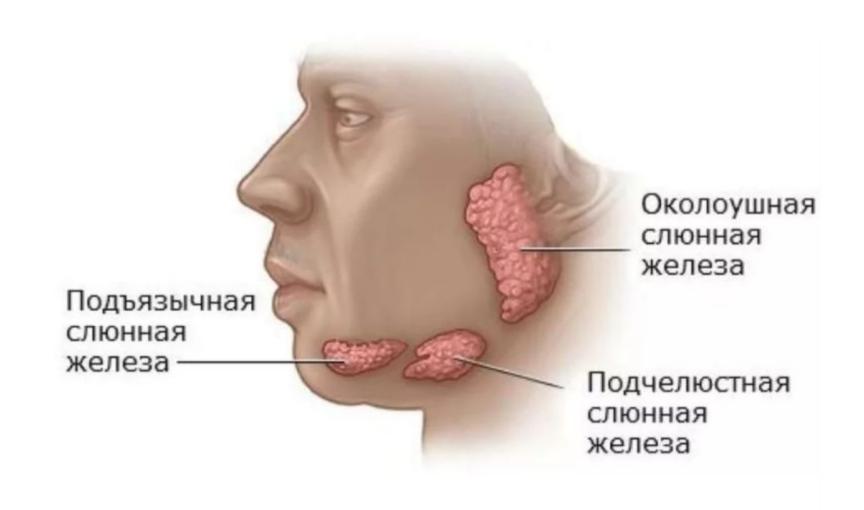
Название метода	Характеристика метода
Зондирование	Введение резиновой трубки-зонда в полость желудка и двенадцатиперстной кишки для получения желудочного и кишечного соков или желчи
Рентгенография	Больному дают выпить жидкую кашицу из вещества, непроницаемого для рентгеновских лучей. Затем при просвечивании на экране прибора определяют контуры разных отделов пищеварительного канала
Эндоскопия	Введение во внутренние органы человека специальных оптических и осветительных приборов, позволяющих осматривать полость пищеварительного канала и даже протоки желез
Ультразвуковая локация	Получение на экране изображения внутренних органов по отражению ультразвуковых волн от их границ
Сканирующая томография	Построение на экране компьютера изображения внутренних органов с использованием метода ядерного парамагнитного резонанса
Радиоэлектронные методы	При прохождении в кишечнике «радиопилюли» (цилиндр, снабженный датчиком) информация о кишечной среде передается с помощью радиоволн

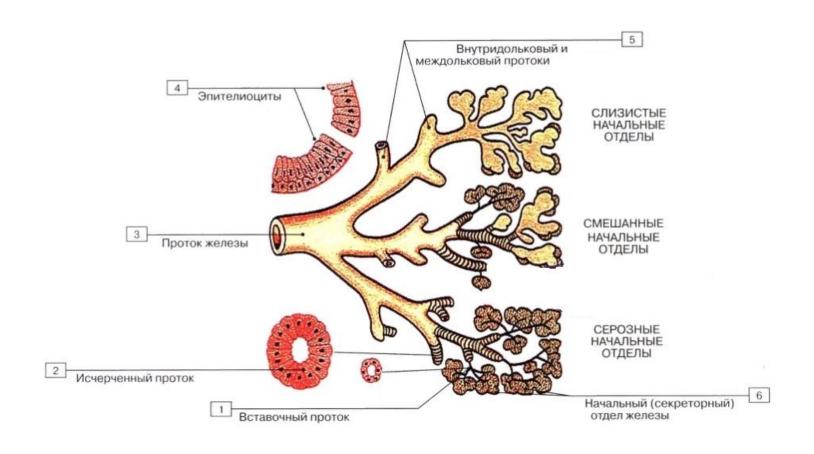
Зондирование

Рентгенография органов пищеварения

Эндоскопия

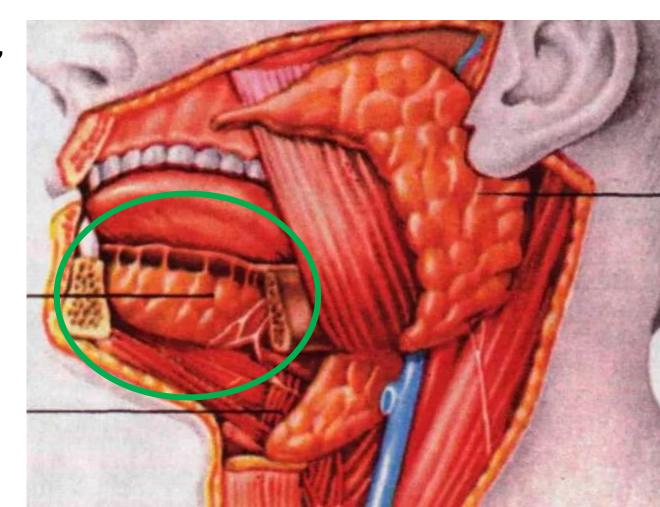

Y3N


Сканирующая томография


Радиоэлектронный метод

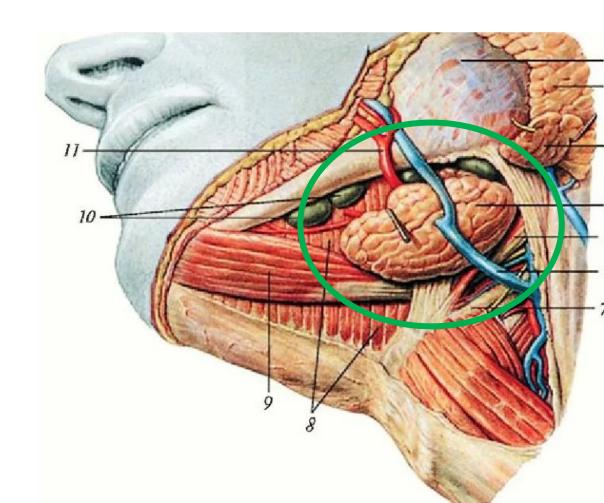
Слюнные железы

Строение слюнных желез

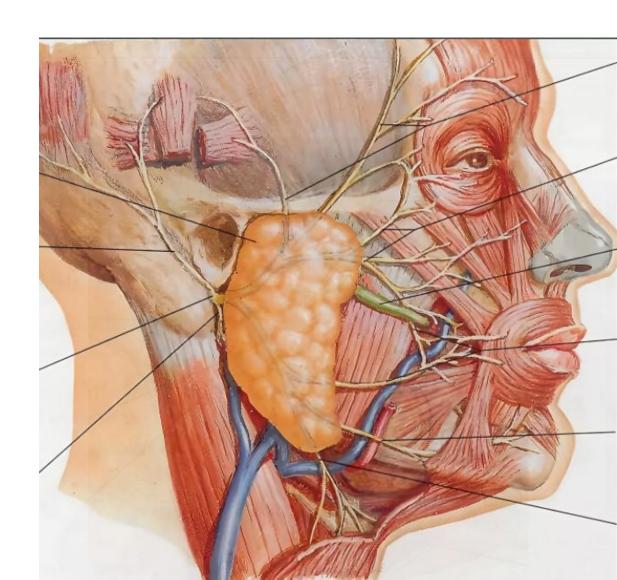


Функции слюнных желез

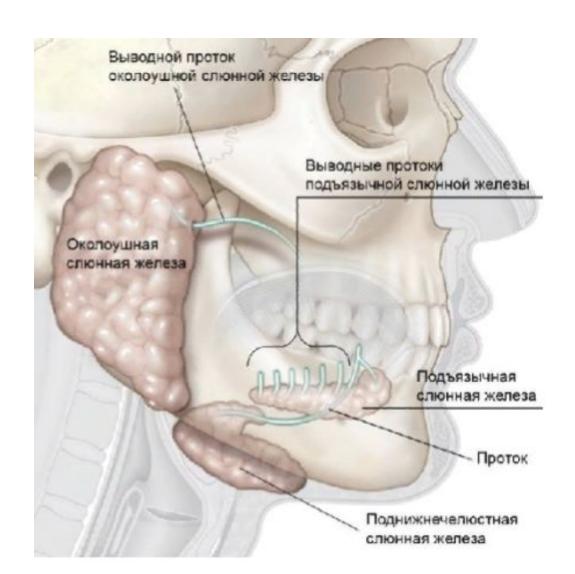
- 1. Продукция слюны, растворяющей часть пищи и облегчающей жевание и глотание
- 2. Поддержание необходимой влажности слизистой ротовой полости
- 3. Секреция лизоцима, пероксидазы и иммуноглобулина A антимикробных и антивирусных факторов
- 4. Секреция гидролитических ферментов, помогающих разложению остатков пищи вокруг зубов
- 5. У грудных детей выполняет герметизирующую роль при акте сосания молока
- 6. Секреция гуморальных факторов роста (эпидермального и нервного)
- 7. Участие в терморегуляции (испарение)


Подъязычная железа: место выхода

- Дольки имеют самостоятельные протоки, открывающиеся на подъязычной складке
- На подъязычном сосочке открывается большой подъязычный проток


Поднижнечелюстная железа: место выхода

Проток поднижнечелюстной железы открываются на подъязычном сосочке



Околоушная железа: место выхода

Имеет протоки в преддверие полости рта на уровне 7-го зуба верхней челюсти

Протоки слюнных желез

Секрет слюнных желез

- Подъязычная железа:
 - Муцин
- Поднижнечелюстная железа:
 - Серозная жидкость
 - Муцин
- Околоушная железа:
 - Серозная жидкость
 - Амилаза

Слюна

- 1. Вода (99,5%)
- 2. Сухой остаток (0,5%)
 - 1. Неорганические вещества
 - 1. Хлориды
 - 2. Карбонаты
 - 3. Фосфаты
 - 4. Сульфаты
 - 5. Соли Na, K, Ca, Mg
 - 2. Органические вещества:
 - 1. Ферменты
 - 2. Муцины
 - 3. Белки плазмы
 - 4. Лизоцим
 - 5. Азотистые вещества
 - 1. Мочевина
 - 2. Мочевая кислота

Свойства слюны

- 1. Слюна является смешанной структурой
- 2. pH равна 6,8 7,4 (в среднем 7,2) слабощелочная
- 3. У взрослого человека за сутки вырабатывается 0,5 2 л

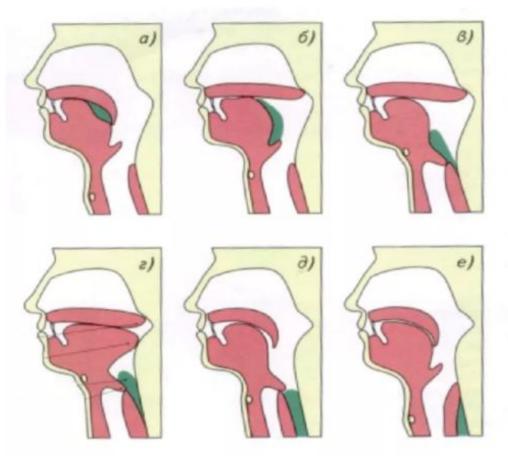
Функции слюны

1. Пищеварительные:

- 1. Смачивание и растворение пищи
- 2. Первичная химическая обработка (амилаза и липаза)

2. Не пищеварительные:

- 1. Защитная (бактерицидная лизоцим, дезинфицирующая протеиназа, деградация нуклеиновых кислот нуклеаза)
- 2. Участие в артикуляции
- 3. Терморегуляция


Пищеварение в полости рта

Пищеварение в полости рта включает два этапа:

- 1. Механическая обработка пищи (измельчение, смачивание слюной, анализ вкусовых свойств)
- 2. Первичная химическая обработка (начальный гидролиз некоторых пищевых веществ и формирование пищевого комка)

Акт глотания

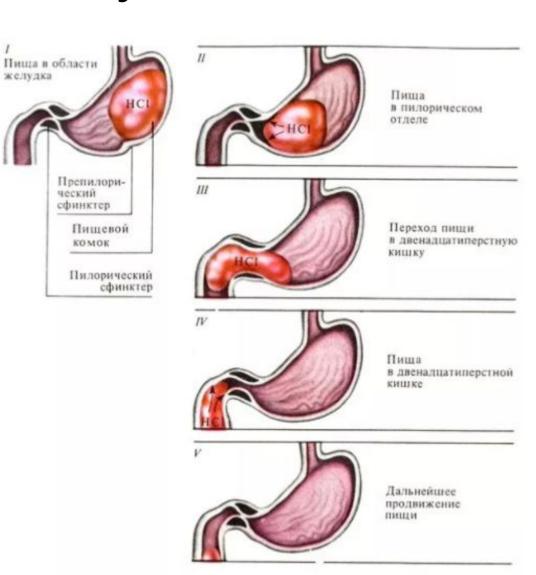
ГЛОТАНИЕ

ТРИ ФАЗЫ:


- 1. РОТОВАЯ
- 2. ГЛОТОЧНАЯ
- 3. ПИЩЕВОДНАЯ

Ротовая фаза глотания – произвольная; глоточная и пищеводная фазы - непроизвольные

Во время глотания мягкое нёбо закрывает вход в носовую полость, а надгортанник — вход в дыхательные пути. По пищеводу пища продвигается за счёт перистальтики.


В межпищеварительном периоде верхний и нижний сфинктеры пищевода закрыты.

Движение пищевого комка в пищеводе

Пищеварение в желудке

В желудке пища, смешанная со слюной задерживается от 3-х до 10 часов для механической и химической обработки

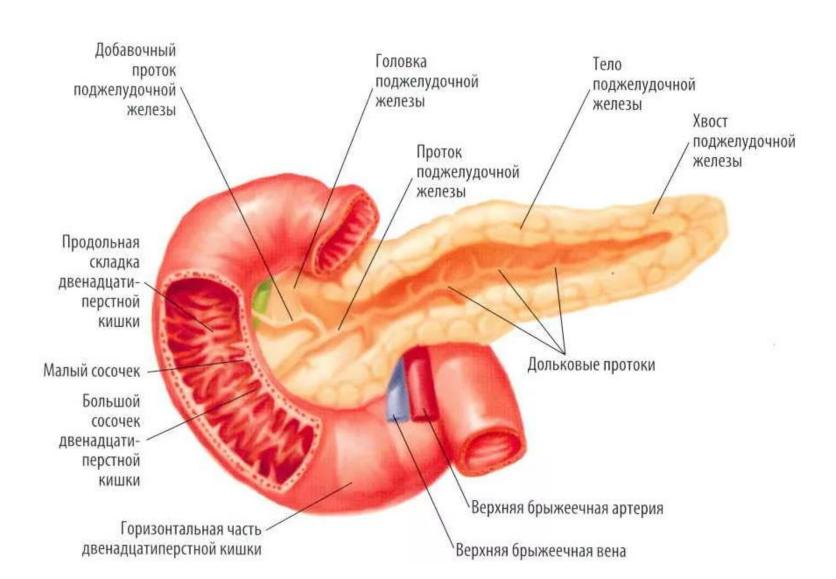
Пищеварение в желудке

Процесс	Рабочий участок
Перетирание пищевого комка в кашицу	Мышечные слои желудка: Продольный – наружный Круговой – средний Косой – внутренний
Уничтожение бактерий	Желудочный сок (Лизоцим, соляная кислота)
Расщепление белков до пептидов	Желудочный сок (Пепсин)
Расщепление жиров молока	Желудочный сок (Липаза)
Продвижение пищи в кишечник	Сфинктер

Желудочный сок

Состав желудочного сока:

- Ферменты:
 - Липаза
 - Пепсин
- Соляная кислота
- Слизь


За сутки вырабатывается 1,5 – 2 литра сока. Кислая среда pH = 2-3

Эвакуация содержимого желудка в двенадцатиперстную кишку

- 1. Повышение давления в пилорическом отделе желудка
- HCl снижает тонус пилорического сфинктера, когда действует со стороны желудка и повышает тонус, когда действует со стороны двенадцатиперстной кишки

Объем порции химуса, поступающего в двенадцатиперстную кишку от 2 до 7 мл

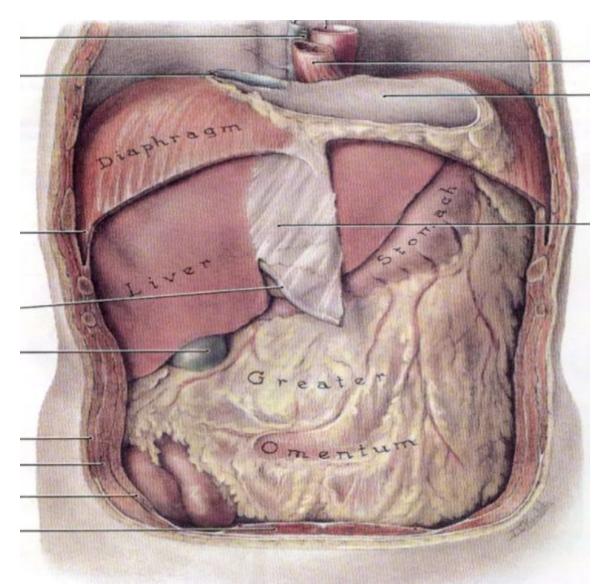
Поджелудочная железа: строение

Поджелудочная железа

Функции поджелудочной железы:

- Эндокринные функции:
 - Выработка инсулина способствует усвоению глюкозы
 - Выработка глюкагона способствует преобразованию гликогена из печены в глюкозу
- Экзокринная функция:
 - Вырабатывает панкреатические соки: трипсин, липаза, амилаз

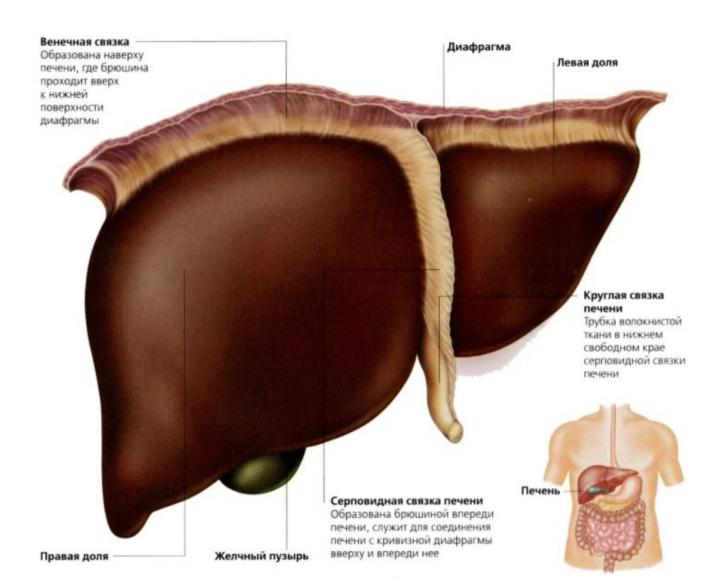
Поджелудочный сок

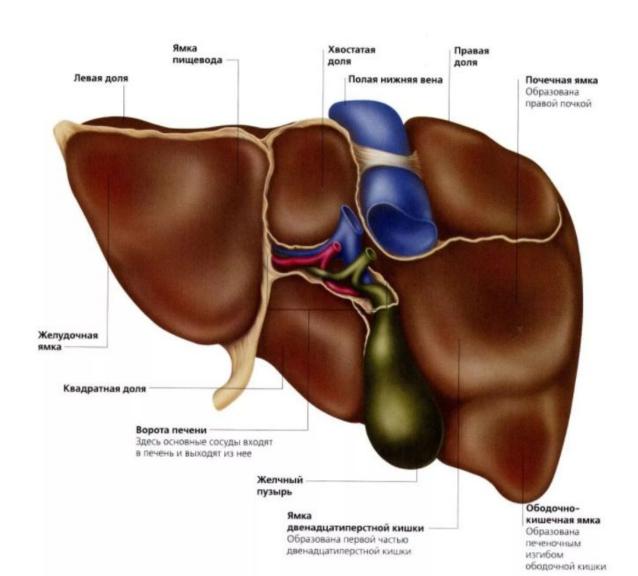

- Бесцветная жидкость щелочной среды (рН 7,8)
- Суточный объем 1,5-2,0 л
- Состав:
 - Вода 98,5%
 - Ферменты:
 - Белковые
 - Углеводные
 - Жировые
 - Неорганический остаток (1%) соляная кислота

Печень: расположение

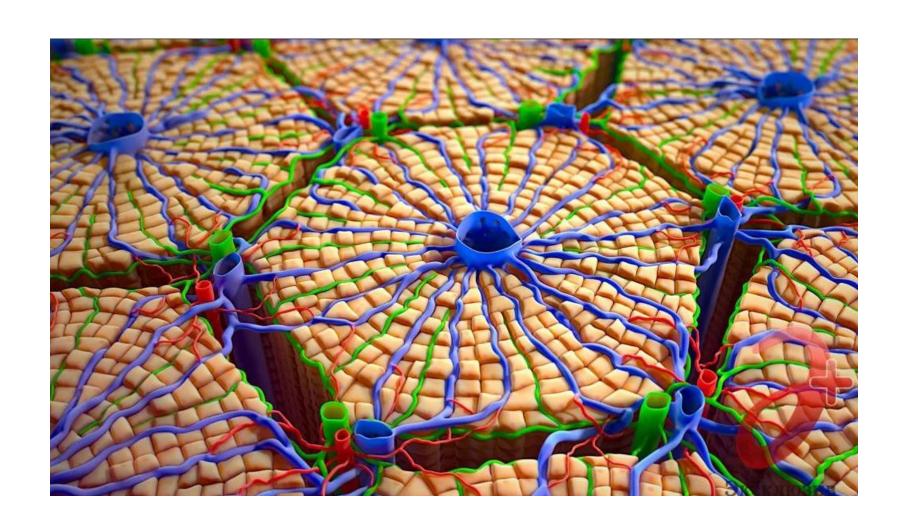
Печень – самая крупная пищеварительная железа (1,5 – 2 кг у взрослого человека, у новорожденного 150-200 гр)

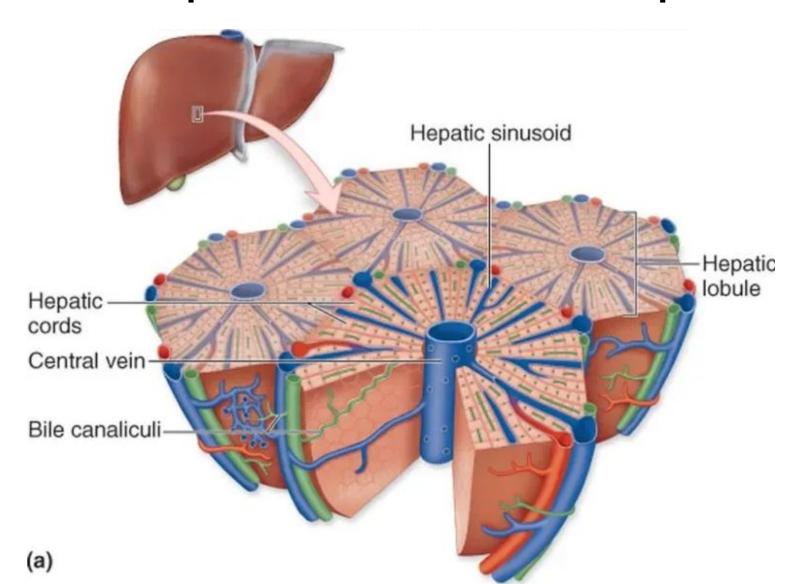
Расположена в правом подреберье под куполом диафрагмы, прикрепляется к ней при помощи серповидной и венечной связок

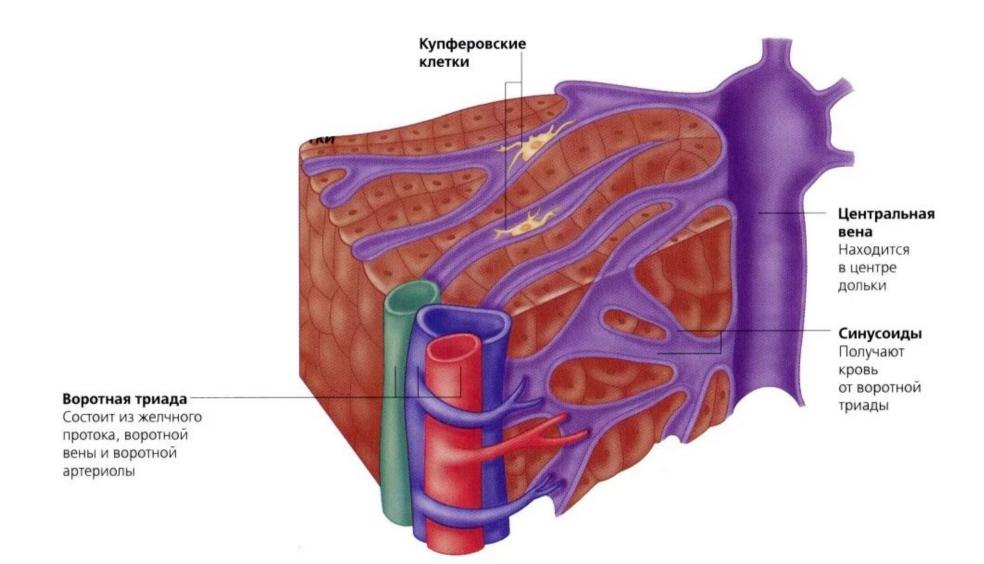

Печень: расположение

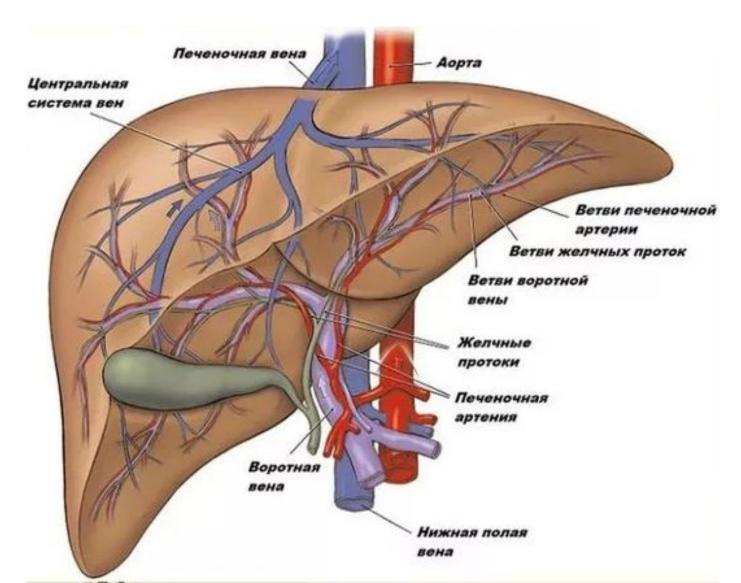

Печень: функции

- 1. Секреторная
 - 1. Секреция компонентов желчи
 - 2. Секреция БАВ
- 2. Синтетическая
 - 1. Синтез белков плазмы крови:
 - 1. Альбумины
 - 2. Глобулины
 - 3. Факторы свертывания крови
 - 2. Синтез гликогена
 - 3. Синтез холестерина
- 3. Метаболическая участие в реакциях:
 - 1. Углеводного обмена
 - 2. Липидного обмена
 - 3. Белкового обмена
- 4. Дезинтоксикационная инактивация продуктов белкового обмена, гормонов, БАВ, лекарственных препаратов, токсинов
- 5. Депонирующая накопление
 - 1. Жирорастворимых витаминов
 - 2. Микроэлементов
 - 3. Гликогена, жиров, белков

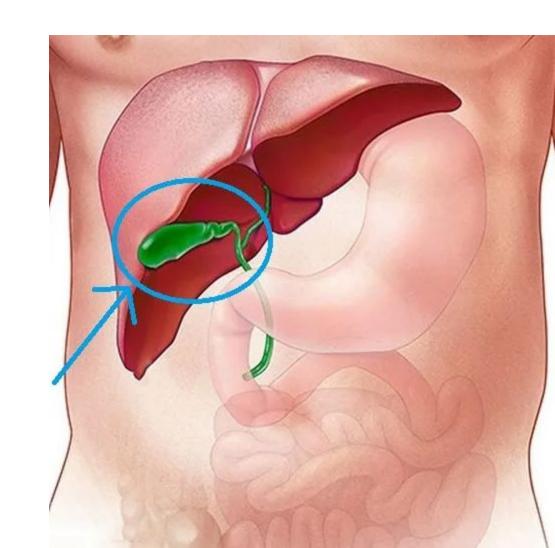

Печень: макроскопическое строение


Печень: макроскопическое строение


Печень: микроскопическое строение


Печень: микроскопическое строение

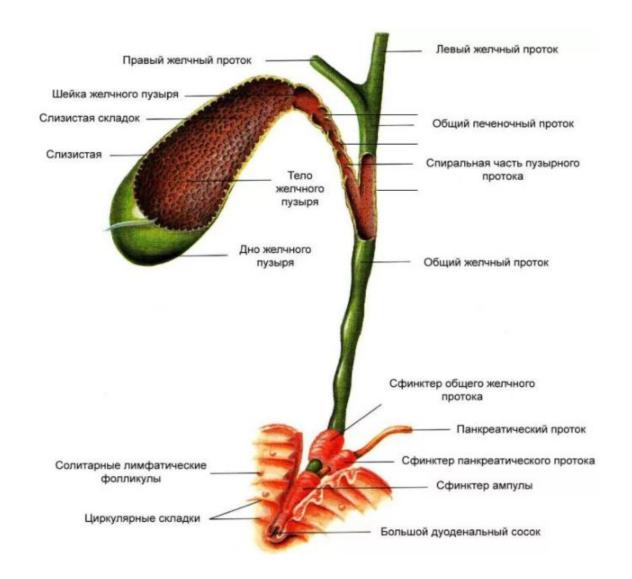
Печень микроскопическое строение


Кровоснабжение печени

Желчный пузырь: расположение

Желчный пузырь имеет грушевидную или коническую форму. Находится между правой и левой долями печени.

Длина от 8 до 14 см, ширина от 3 до 5 см. Ёмкость от 40 до 70 см3. Темно-зеленого цвета


Желчный пузырь

Желчный пузырь

Желчный пузырь строение

Состав и свойства желчи

Желчь состоит из 98% воды и 2% сухого остатка (Натрий, калий, кальций, железо, сульфатные и фосфорные основания)

Свойства желчи:

- Печеночная желчь:
 - Золотисто-желтый цвет
 - pH 7,3-8,0
 - Плотность 1,008-1,015
- Пузырная желчь:
 - Темно-коричневый цвет
 - pH -6,0-7,0
 - Плотность 1,026-1,048

Механизм образования желчи

- Печеночная желчь продуцируется гепатоцитами в желчные капилляры. В промежутках между приемами пищи они отправляются в желчный пузырь
- Пузырная желчь концентрированная печеночная желчь (в 10 раз)

Пищеварение в тонком кишечнике

Тонкий кишечник – это основное место переваривания и всасывания углеводов, белков и жиров в пищеварительном тракте

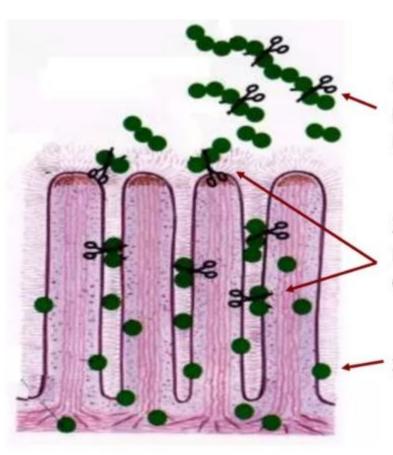
Участники пищеварения в тонком кишечнике:

- Панкреатический сок
- Кишечный сок
- Желчь

Состав кишечного сока

98% воды, 2% ферментов (более 20 шт). Объем – 2-3 литра. Бесцветная мутноватая жидкость.

Функции сока тонкого кишечника


- Пептидазы расщепляют пептиды на аминокислоты
- Липазы расщепляют жиры
- Альфа-глюкозидаза расщепляет сахарозу на моносахариды
- Сахараза, лактаза, мальтаза, изомальтаза расщепляют углеводы
- Фосфотаза расщепляет связи фосфорной кислоты

Пищеварение в тонкой кишке

- Пищеварение в тонком кишечнике делят на три типа:
 - Полостное (ферменты осуществляют гидролиз в просвете ЖКТ)
 - Пристеночное (гидролиз ферментами на слизистой стенки ЖКТ)
 - Внутриклеточное пищеварение

Ворсинчатая поверхность тонкого кишечника увеличивает площадь всасывания в 10 раз

Пищеварение в тонком кишечнике

1. Полостное пищеварение приспособлено для гидролиза полимеров

2. Пристеночное пищеварение приспособлено для гидролиза олигомеров

3. Всасывание мономеров

Пищеварение в толстом кишечнике

В толстом кишечнике всасываются некоторые питательные вещества и большая часть жидкостей

В толстом кишечнике формируются каловые массы

Синтез бактериями витаминов К и витаминов группы В. Помогают расщеплять клетчатку

Микрофлора толстого кишечника

В микрофлоре толстого кишечника выделяют три группы бактерий:

- 1. Главная (90%) бифидобактерии
- 2. Сопутствующая (10%) лактобактерии, эшерихии, жнтерококки
- 3. Остаточная (Менее 1%) протеи, дрожжи, стафилококки, цитробактер, энтеробактер

Поддерживают водный, электролитный и кислотно-щелочной балансы в организме. Синтезируют некоторые гормоны и вещества.

Акт дефекации

- Каловые массы проникают в прямую кишку и соприкасаются со слизистой. Давление раздражает нервные рецепторы
- Растяжение прямой кишки повышает в ней давление, что вызывает расслабление внутреннего анального сфинктера. Появляется позыв на дефекацию (не произвольный процесс). Наружный сфинктер остается сомкнутым
- 3. Под контролем головного мозга (произвольный процесс) анальный сфинктер расслабляется и происходит удаление каловых масс