Сравнительный анализ микропроцессорных защит в энергетических системах

Руководитель: к.т.н., доцент Солопов Р.В Автор: студент группы ЭС2-15з Ипатов Е.А.

Цель исследования - анализ микропроцессорной релейной защиты — защиты нового поколения и замена устаревшей аналоговой электромеханической релейной защиты и автоматики на примере ГПП-1 ОАО «АВТОВАЗ» на РЗА, в основе которой лежит микропроцессорная техника.

Задачи:

- -анализ существующей РЗА на ГПП-1 ОАО «АВТОВАЗ»;
- -выбор наиболее оптимального варианта реконструкции устройств РЗА ГПП-1;
- -анализ основных проблем и направлений реконструкции устройств РЗА ГПП-1;
- технико-экономическое обоснование применения микропроцессорных защит на ГПП-1.

СОДЕРЖАНИЕ

- 1 Анализ современного состояния микропроцессорной электроники и её роли в релейной защите
- 2 История создания релейной защиты и автоматики
- 3 Достоинства и недостатки микропроцессорной релейной защиты
- 4 Обзор различных производителей микропроцессорных устройств защиты и автоматики, применяемых для защиты на ГПП предприятий
- 5 Разработка рекомендаций по установке микропроцессорных устройств релейной защиты и автоматики на ГПП-1
- 6 Выбор трансформаторов тока
- 7 Расчет уставок релейной защиты и автоматики силовых трансформаторов и отходящих фидеров ГПП-1. Дифференциальная токовая защита силовых трансформаторов на модуле SPCD 3D53
- 8 Технико-экономическое обоснование применения микропроцессорных защит серии «ТЭМП 2501 XX» на ГПП-1
- 9 Техника безопасности и охраны труда при обслуживании и настройки устройств релейной защиты и автоматики

Виды и назначение релейной защиты

Основные достоинства и недостатки МП РЗА

+	_
многофункциональность	высокая цена
компактность	требуется надёжный оперативный ток
наблюдаемость	нужна электромагнитная совместимость
может быть частью АСУ ТП	нужна информационная безопасность
самодиагностика	узкий рабочий температурный диапазон
устойчивость к механическим воздействиям	
более простой выбор уставок	
высокая точность и стабильность измерений	
малое энергопотребление	
высокая чувствительность	

Производители микропроцессорных защит

- «Siemens» (Германия)
- «Schneider-electric»(Франция)
- ООО «АББ Автоматизация» (Россия)
- НПП «ЭКРА» (Россия)
- НТЦ «Механотроника» (Россия)
- НПФ «РАДИУС» (Россия).

Микропроцессорное устройство серии «ТЕМП 2501-XX»

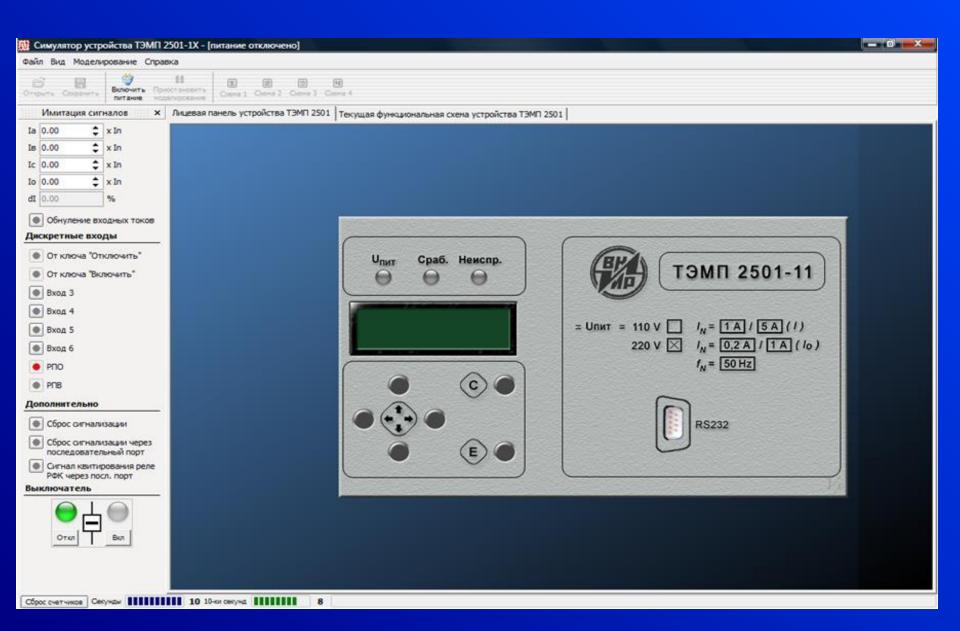
Устройства серии «ТЭМП 2501» разработаны для применения на объектах с неблагоприятной электромагнитной обстановкой. Реализованные в устройствах технические решения обеспечивают их нормальное функционирование без сбоев в условиях воздействия помех в соответствии с ГОСТ Р 51317.6.5 «Совместимость технических средств электромагнитная. Устойчивость к электромагнитным помехам технических средств, применяемых на электростанциях и подстанциях», что регулярно подтверждается испытаниями в аккредитованных лабораториях по измерению параметров ЭМС.

Микропроцессорное устройство серии «ТЕМП 2501-XX»

- 1. Выполнена реконструкция релейной защиты комплектного распределительного устройства (КРУ) 10 кВ ГПП автозавода.
- 2. Выполнен анализ производителей микропроцессорных устройств релейной защиты и автоматики, применяемых для защиты силовых трансформаторов и отходящих фидеров.
- 3. Проведен выбор устройств микропроцессорной релейной защиты и автоматики для КРУ 10 кВ ГПП автозавода.
- 4. Рассчитаны уставки дифференциальной защиты силовых трансформаторов и КРУ 10 кВ ГПП с применением микропроцессорного устройства релейной защиты и автоматики.
- 5. Доказана целесообразность замены аналоговых электромеханических устройств релейной защиты на микропроцессорные устройства.
- 6. Выполнено технико-экономическое обоснование применения микропроцессорных защит серии «ТЭМП 2501 XX» на ГПП.

Расчет токов КЗ

Мощность	Мощность КЗ	Ток трехфазного	Ток трехфазного
трансформатора,	системы, МВА	K3, A	K3, A
MBA	100	Сторона ВН	Сторона НН
и напряжение, кВ		(115 <u>KB</u>)	(10,5 KB)
$S_{I \text{ HOM}} = 63 \text{ MBA}$	$S_{K \text{ max}} = 4600$	1610	14810
$U_{BH} = 115 \text{kB}$	$S_{K} = 2000$	589	6449
<u>U</u> нн = 10,5кВ	S _{K min} = 1500	1043	13250


Расчет цены комплекта защиты и управления дискретных реле эквивалентного по функциям терминалу «ТЭМП 2501 – 1X»

№ д/п	Функция «ТЭМП 2501 – 1Х»	Состав дискретных реле для реализации функции	Цена комплектующих реле (без НДС)	Цена (без НДС) с учетом затрат на КРУ – строительном заводе	
			(руб.)	Min (py6.)	Мах (руб.)
1	2	3	4	5	6
1.	Трехступенчатая двухфазная МТЗ, двухфазная МТЗ, двухрелейная, с ускорением, с зависимой или независимой от тока выдержкой времени 3-й ступени, с тремя выдержками времени 2-й ступени.	4*PT,2*PT90,3*PВ, 2*РП, 4*РУ	9443	13220	16053
2.	Логическая защита шин	1РП	449	629	763
3.	УРОВ	РТ40/Р, РВ, РУ, РП.	3000	4200	5100
4.	Удвоение уставок 1,2 ступеней МТЗ при включении (для отстройки от «бросков» тока)	В МТЗ вместо 4*РТ40 применяются 4*РНТ - 565	4*1902, удорожание МТЗ (пункт 1) на 5948	Удорожание МТЗ (пункт 1) на 8237	Удорожание МТЗ (пункт 1 на 10112
5.	Защита от замыкания на	PT3 - 51, PB, PV.	3064	4290	5209
	землю по току I _o (две группы уставок по току и времени)	Для 2-х групп уставок 2*PT3 – 51, PB, 2*PУ.	4973	6962	8454
6.	Защита од несимметричных режимов и обрыва фазы	РТФ − 9, РВ, РУ.	4647	6506	7900

Трансформаторы тока ГПП-1

Сторона напряжения U, <u>кВ</u>	Фаза	Место уст-ки	Тип ТТ	Ктт	Класс точности	Ѕном2
	Α	Встр	TBT-110	600/5	3	30
	В	Встр.	TBT-110	600/5	3	30
115	C	Встр.	TBT-110	600/5	3	30
	0	Встр.	TBT-35	300/5	Не исп.	Не исп.
		TP-1B	ТПШЛ-10	3000/5	0,5(P)	20/30
		1B	ТПШЛ-10	3000/5	0,5(P)	20/3 0
	A	TP-2B	ТПШЛ-10	3000/5	0,5(P)	20/3 0
		2B	ТПШЛ-10	3000/5	0,5(P)	20/3 0
	В	TP-1B	ТПШЛ-10	3000/5	0,5(P)	20/3 0
10,5	8	TP-2B	ТПШЛ-10	3000/5	0,5(P)	20/3 0
-		TP-1B	ТПШЛ-10	3000/5	0,5(P)	20/3 0
	8	1B	ТПШЛ-10	3000/5	0,5(P)	20/3 0
	С	TP-2B	ТПШЛ-10	3000/5	0,5(P)	20/3 0
	8	2B	ТПШЛ-10	3000/5	0,5(P)	20/3 0

Общий вид рабочего окна программы-симулятора

СПАСИБО ЗА ВНИМАНИЕ!