Технологии современных материалов

Что такое материал? *Материал* — это вещество (смесь веществ), которое используется для изготовления продукции, строительства или создания каких-либо материальных благ. В отличие от сырья под материалами обычно понимают продукты, прошедшие предварительную (промышленную) обработку.

Материалы могут быть основными и вспомогательными. Основными называют материалы, входящие в состав готовой продукции в виде её главной составляющей (например, мука при производстве хлебобулочных изделий). Вспомогательными называют материалы, которые применяются для придания продукту определённых свойств (соль, красители) либо способствуют нормальному протеканию производственного процесса.

§ 1 Технология изготовления изделий из порошков (порошковая металлургия)

В современном мире возникла необходимость создания изделий с особыми свойствами, которые невозможно получить с помощью известных технологий обработки материалов. Для решения этой задачи была создана порошковая металлургия.

Порошковая металлургия — технология получения металлических порошков и изготовления изделий из них (или их сочетаний с неметаллическими порошками).

Элементы порошковой металлургии существовали ещё в Египте в III в. до н. э., где из порошков золота создавали украшения нужной формы.

В настоящее время данная технология позволяет получать высокоточные изделия из комбинации материалов, которые не смешиваются в обычных условиях, причём эти изделия обладают заранее заданными человеком свойствами (механическими, магнитными и др.). Кроме того, можно создать изделие, имеющее очень сложную форму, которую нельзя получить никакими другими технологическими операциями.

В общем виде технологический процесс порошковой металлургии состоит из четырёх основных этапов:

- 1) производство порошков: металлические порошки изготавливают измельчением металлов в специальных мельницах, распылением жидких металлов в среде газа, химическими методами и др.;
- смешивание: порошки тщательно смешивают до получения однородной смеси;
- 3) формование: порошок засыпают в стальную пресс-форму, имеющую форму готовой детали, прессуют под большим давлением, в результате чего частички порошка плотно сцепляются друг с другом, и из формы достают готовую деталь;
- 4) спекание: спрессованные детали нагревают в печи при температуре ниже температуры плавления металла, после чего готовая деталь приобретает необходимую прочность и другие свойства.

Иногда применяют дополнительные операции: механическую, термическую или химическую обработку, пропитку смазками и др.

Широкое распространение получила металлокерамика — искусственный материал, представляющий собой соединение металлов (или сплавов) с неметаллами (керамикой). Металлокерамические изделия объединяют важные конструкционные и эксплуатационные свойства металлов и неметаллов. Твёрдые сплавы, полученные на этой основе, обладают повышенной прочностью и износостойкостью, благодаря чему их применяют для обработки металлов резанием (рис. 1), бурения горных пород и др.

Жаростойкость металлокерамики позволяет применять её в тормозных устройствах самолётов, автомобилей и других машин, так как при торможении выделяется много тепла. Другим примером металлокерамики, полученной спеканием порошков из смеси металла (железа, бронзы и др.) и графита, могут служить пористые (имеющие мелкие отверстия — поры) самосмазывающиеся подшипники, хорошо удерживающие смазку (рис. 2). При изготовлении их пропитывают маслом, которое во время работы подшипников выдавливается из пор и смазывает трущиеся поверхности деталей. Такой же метод смазки применяют и в современных швейных машинах.

Рис. 1. Пластины из твёрдого сплава, применяемые для обработки металлов резанием

Рис. 2. Пористые бронзографитовые подшипники

Изделия порошковой металлургии сегодня используют в различных отраслях: ракетостроении, авиастроении, автомобилестроении, транспортном и химическом машиностроении, приборостроении, турбостроении, при строительстве ядерных реакторов и др.

В настоящее время созданы пористые металлические сплавы, способные изменять свою форму под действием температуры или магнитного поля.

Таким образом, порошковая металлургия позволяет создавать многофункциональные материалы, удовлетворяющие возрастающие потребности людей.

1. Чем основной материал отличается от вспомогательного? **2.** Что такое порошковая металлургия? **3.** Где применяется металлокерамика?

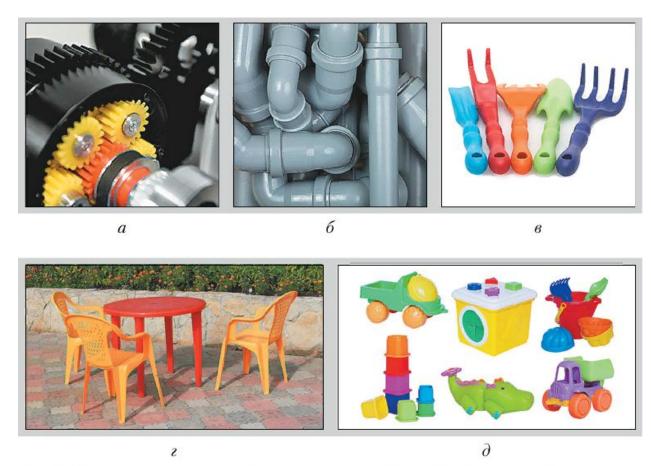
§ 2 Пластики и керамика

Пластики и керамику называют современными многофункциональными материалами из-за широкого их применения во многих областях человеческой деятельности.

Пластики

В 5 и 6 классах вы кратко ознакомились с искусственными материалами — пластмассами.

Пластики, или пластмассы (пластические массы) — это органические материалы, основой которых являются синтетические или природные высокомолекулярные соединения (полимеры). Исключительно широкое применение нашли пластмассы на основе синтетических полимеров.


Синтетическими полимеры называют потому, что их получают с помощью технологий синтеза (синтез — процесс соединения веществ в единое целое) определённых химических веществ.

Полимеры подразделяют на термопластичные и термореактивные. *Термопластичные* полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, а при охлаждении затвердевают. *Термореактивные* полимеры при нагреве не плавятся, а разрушаются.

Кроме полимера, пластмассы содержат наполнители (для придания пластмассе таких свойств, как прочность и термостойкость), пластификаторы (для повышения пластичности материала) и красители (для окрашивания пластмасс в разные цвета).

Способ производства пластмасс был открыт учёными-химиками в середине XIX в. В настоящее время во многих областях деятельности человека недорогие пластмассы заменили дорогостоящие металлы и другие материалы (рис. 3).

Наиболее распространённой технологией получения изделия из пластмассы является технология литья под давлением, которая заключается в том, что расплавленная пластмасса впрыскивается в металлическую пресс-форму и при остывании образует готовую деталь.

Рис. 3. Изделия из пластмасс: a — детали машин; δ — трубы; ϵ — садовый инвентарь; ϵ — мебель; δ — детские игрушки

Достоинством пластмасс является меньший, чем у металлов, вес, они не чувствительны к влажности, устойчивы к действию сильных кислот и растворителей, не оказывают вредного воздействия на человека. Однако, многие пластмассы являются более хрупкими и менее прочными, чем металлы.

Из-за широкого распространения пластмасс в мире возникла проблема утилизации их отходов, которые обязательно должны перерабатываться, поскольку при сжигании пластика выделяются токсичные вещества, а разлагается пластик в течение 100–200 лет.

В 1988 г. была введена система международных универсальных кодов переработки пластмасс (табл. 1).

Благодаря полезным свойствам пластмассы широко применяют в машиностроении, текстильной промышленности, сельском хозяйстве, медицине, автомобиле- и судостроении, авиастроении и в быту.

Значок маркировки пластмассы	Название	Примечание
201 PET	ПЭТ, ПЭТФ (полиэтиленте- рефталат)	Используется для производства тары для безалкогольных напитков, фруктовых соков и др.
PE-HD	ПЭНД (полиэтилен низкого давления)	Применяется для производства бутылок, фляг, полужёсткой упаковки. Считается безопасным для пищевого использования
Z ₀₃ P√C	ПВХ (поливинил- хлорид)	Используется для производства труб, садовой мебели, оконных профилей, тары для моющих средств. Является потенциально опасным для пищевого использования
PE-LD	ПЭВД (полиэтилен высокого давления)	Применяется для производства мусорных мешков, пакетов, плёнки и гибких ёмкостей. Считается безопасным для пищевого использования
205 PP	ПП (полипропилен)	Используется в автомобильной промышленно- сти, при изготовлении игрушек, а также в пищевой промышленности, в основном для упаковок. Распространены полипропиленовые трубы для водопроводов. Считается безопас- ным для пищевого использования
206 PS	ПС (полистирол)	Используется при изготовлении плит теплоизо- ляции зданий, упаковок, посуды, ручек и др. Является потенциально опасным, особенно в случае горения, поскольку содержит стирол
<u>م</u>	Прочие	К этой группе относится любой другой пла- стик, который не может быть включён в пре- дыдущие группы. В основном это поликарбо- нат, который может содержать опасные для человека вещества

Сегодня на базе пластиков создано углеродистое волокно, в 15 раз превосходящее по прочности самую лучшую сталь. Для этого изготовленное на основе целлюлозы вискозное волокно смешивают с синтетическими волокнами, искусственными смолами, другими высокомолекулярными соединениями и нагревают до высокой температуры в среде инертных газов. Получившееся волокно содержит более 85 % углерода, откуда и происходит его название. Благодаря прочности, устойчивости к воздействию высоких температур и химических веществ его используют в авиастроении, также из него изготавливают изделия для электро- и радиотехники. На основе углеродных волокон получают жёсткие и гибкие электронагреватели, обогреваемую одежду и обувь, защитные костюмы.

Керамика

Керамические изделия (*керамику*) получают из порошка, состоящего из соединений металлов с кислородом, азотом или углеродом, уплотнённого в пресс-форме и нагретого до 2000 °C в специальной печи. Детали из керамики, в отличие от металлов, могут выдерживать сильный нагрев, не теряя прочности, поэтому их стали широко использовать в двигателях внутреннего сгорания, установленных на современных автомобилях (клапаны, поршни, толкатели, шарики для шарикоподшипников и др.) (рис. 4). Причём эти детали легче стальных. Кроме того, керамика отличается высокой твёрдостью и стойкостью к истиранию. Учёными успешно испытан в лабораторных условиях полностью керамический двигатель, работающий при очень высоких температурах.

В металлообработке режущие инструменты с пластинами из корундовой керамики (корунд — искусственно синтезированный очень твёрдый минерал) легко обрабатывают высокопрочные стали.

Рис. 4. Деталь из керамики для двигателя внутреннего сгорания

Рис. 5. Керамические ножи: a — для нарезания продуктов; δ — для чистки овощей

В электротехнике и электронике керамические материалы используют для изготовления изоляторов, конденсаторов, для монтажа микропроцессоров, а также во многих полупроводниковых приборах.

В атомной энергетике керамику применяют вместо металлов в ядерных реакторах, где рабочие температуры слишком высоки для металлов.

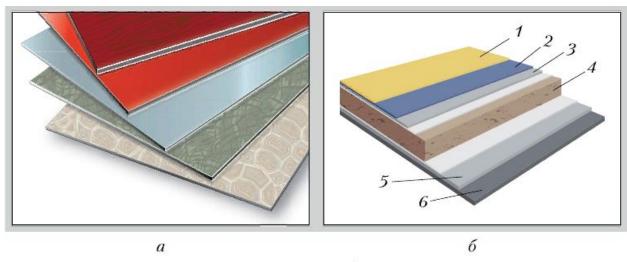
Высокотехнологичная керамика, которая использовалась в космической индустрии, стала применяться в стоматологии при зубном протезировании. Эта керамика прочней обычного пломбировочного материала, имеет высокую биологическую совместимость с организмом человека, обладает идеально гладкой поверхностью.

В настоящее время в домашнем обиходе всё чаще появляются керамические ножи, овощечистки и др., имеющие лезвия, изготовленные на основе диоксида циркония (рис. 5). Лезвия таких кухонных инструментов не ржавеют и долго не требуют заточки, но очень чувствительны к ударам и падениям. Ножом нельзя резать на твёрдой поверхности во избежание выкрашивания режущей кромки.

Биоматериалы — это синтетические или естественные материалы, используемые в медицине. Биоматериалы применяют для улучшения качества и продолжительности жизни человека путём замены повреждённых участков его организма: отдельных органов и тканей, которые по разным причинам утратили способность выполнять возложенные на них функции. В настоящее время биоматериалы используют для лечения, восстановления и замены более 40 различных частей человеческого тела, включая кожные покровы, мышечную ткань, кровеносные сосуды, нервные волокна, костную ткань. На смену металлическим биоматериалам пришли биокерамические материалы (биокерамика) и синтетические полимеры, которые обладают необходимой биологической совместимостью с человеческими органами.

Пластики (пластмассы), технология синтеза, термопластичные и термореактивные полимеры, углеродистое волокно, керамика, биоматериалы (биокерамика).

1. Что, кроме полимеров, содержится в составе пластмасс? **2.** Чем термопластичные пластмассы отличаются от термореактивных? **3.** Назовите области применения промышленной керамики.


§3

Композитные материалы

Композитный материал (композит) — искусственно созданный неоднородный сплошной материал, состоящий из нескольких компонентов (с различными физическими и химическими свойствами) с чёткой границей раздела между ними. Примером композита является известная вам фанера, склеенная из нескольких слоёв шпона, а в 5 классе вы ознакомились с гетинаксом — слоистым пластиком из спрессованной бумаги, пропитанной смолой.

Современные композиты часто приобретают новые улучшенные свойства, которыми отдельные, входящие в них компоненты, не обладают — это повышенная прочность, износостойкость, защита от механических повреждений и агрессивной среды и др.

Обычно инженеры создают композитные материалы для решения какой-либо конкретной задачи. Не существует универсального композитного материала для выполнения множества функций.

Рис. 6. Композитные панели: a — общий вид; δ — вид в разрезе: 1 — защитная плёнка; 2 — лакокрасочное покрытие; 3 — лист алюминия; 4 — пластик; 5 — лист алюминия; 6 — антикоррозионное покрытие

Стеклопластики являются одним из самых доступных и недорогих композитов. Это материалы, состоящие из стеклянного волокна и связующего вещества — полимера. Детали из стеклопластика могут иметь любую форму, цвет и толщину.

До недавнего времени стеклопластики использовали преимущественно в самолётостроении, кораблестроении и космической технике. В настоящее время из стеклопластиков производят следующие изделия: дверные, оконные и другие профили, бассейны, водные аттракционы, водные велосипеды, лодки, лыжи, хоккейные клюшки, рыболовные удилища, навесы на остановках общественного транспорта, кузовные панели для грузовых и легковых автомобилей, трубы различного назначения и др. (рис. 7). Стеклопластик также широко применяют в жилищном строительстве.

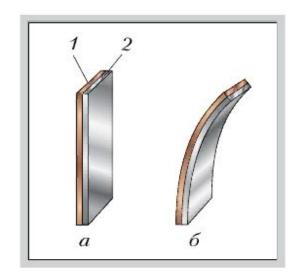

В домах детского творчества школьники часто вручную изготавливают стеклопластиковые корпуса моделей судов, самолётов, машин из эпоксидного клея и стеклоткани.

Рис. 7. Изделия из стеклопластика: a — детская площадка; δ — лодка; δ — хоккейная коробка; ϵ — скамейка

Биметалл — композитный материал, состоящий из двух или более различных металлических слоёв металлов или их сплавов. В бытовой технике (электрических утюгах, чайниках и др.) часто применяют биметаллические пластины из стали и меди. При повышении температуры медная часть пластины удлиняется сильнее, чем стальная, в результате чего пластина изгибается (рис. 8) и отключает электрический прибор, не допуская его перегрева (свойство теплового расширения металлов вы будете изучать на уроках физики).

Биметалл применяют для чеканки монет, изготовления термометров, корпусов

Рис. 8. Биметаллическая пластина: a — в исходном состоянии; δ — после нагрева: 1 — медь; 2 — сталь

атомноэнергетического оборудования, при изготовлении узлов ракетнокосмической техники и т. д.

- **1.** Назовите предметы обихода, изготавливаемые ранее из простых материалов (древесины, глины, металлов и др.), а в настоящее время из современных материалов (пластмассы, керамики и др.).
- 2. Перечислите в рабочей тетради изделия, изготовленные из современных материалов, имеющиеся в вашем классе, школе, школьном дворе.
- **3.** Рассмотрите изделия из пластмасс, предложенные учителем. Изучите значки маркировки пластмассы, нанесённые на эти изделия. Пользуясь таблицей 1, сделайте вывод о разрешённой области применения данных изделий.

Композитный материал (композит), стеклопластики, биметалл.

1. Чем отличаются композитные материалы от других материалов? **2.** Назовите примеры применения стеклопластиков. **3.** Что такое биметалл?

13

Технологии нанесения защитных и декоративных покрытий

В настоящее время широко применяются технологии нанесения на поверхность деталей плёнок (покрытий) с заданными свойствами. По-крытия бывают защитные (например, для предохранения металлов от коррозии), защитно-декоративные, ∂ екоративные и специальные (для придания поверхности особых свойств).

Наиболее широкое распространение получили технологии, использующие химические реакции. Например, хромирование, никелирование, цинкование, меднение, серебрение, золочение поверхностей деталей выполняют в ёмкостях, наполненных специальными растворами химикатов (рис. 9).

Xромирование — нанесение на поверхность металлической детали тонкого слоя хрома (толщиной до 0.25 мм) для повышения износостойкости и защиты от коррозии.

Никелирование — покрытие поверхностей металлических, керамических, пластмассовых, стеклянных деталей слоем никеля (толщиной до 0,05 мм) для защитно-декоративных целей.

Цинкование — покрытие металла слоем цинка для защиты от коррозии. Современное технологическое оборудование позволяет создавать покрытия методом *напыления* необходимого материала на поверхность деталей.

При *плазменном* напылении напыляемый материал в виде порошка или проволоки подаётся в излучаемую плазмотроном струю плазмы, направленную на поверхность детали. Там он плавится и, ударяясь о поверхность, приваривается к ней, образуя равномерный слой покрытия. При *газопламенном* напылении порошок подаётся к поверхности струёй горящего газа высокой температуры из газовой горелки.

Рис. 9. Изделия с защитными и декоративными покрытиями: a — хромированный шланг; δ — никелированные детали водопровода; ϵ — оцинкованная садовая лейка; ϵ — позолоченные часы

Так формируются хромовые, никелевые, медные, алюминиевые, цинковые покрытия, а также покрытия из окислов металлов и полимеров.

В настоящее время получило широкое распространение покрытие варочных поверхностей кухонной посуды (сковород, кастрюль и др.) тефлоном-полимером, обладающим антипригарными свойствами. Следует помнить, что тефлон может безопасно нагреваться до 200 °C, но свыше этой температуры он выделяет вредные для организма человека вещества.

Покрытия (защитные, декоративные); хромирование, никелирование, цинкование; напыление (плазменное, газопламенное).

1. Какие покрытия можно наносить на поверхность деталей с помощью технологий, использующих химические реакции? 2. Как называется технология «бомбардировки» поверхности детали расплавленными частицами порошка?