
ИНФОРМАТИКА

1.1. ХАРАКТЕРИСТИКИ ИНФОРМАЦИИ

- Структура
- Форма представления
- Количество

Структура

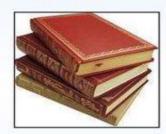
Структура – характеризует системность информации.

Структура

Система – множество взаимосвязанных элементов, обладающее новым качеством, которым не обладает ни одна часть системы.

Форма представления

Числовая информация



https://en.ppt-online.org/10465

Текстовая информация

Графическая

информация

Звуковая информация

Видео информация

Количество информации

Алфавитный подход

$$A = \{a_1 \; ; a_2 ; a_3 ; ... a_n\}$$
 — сообщение, $a_i \in B$ — символы сообщения, $B = \{b_1 \; ; b_2 ; b_3 ; ... b_m\}$ — алфавит , n — число символов в сообщении, m — размерность (мощность) алфавита.

1)
$$N = m^n$$
 (1.1.2)

- число комбинаций символов;

2) Информационная емкость сообщения:

$$R = \log_2 N = \log_2(m^n) = n \log_2(m)$$
, бит. (1.1.3)

Исходные данные: – текстовый документ из 512 страниц, каждая страница содержит 32 строки, каждая строка состоит из 64 символов, мощность алфавита m=256 символов.

Найти: информационную емкость документа.

Решение:

- 1) находим число символов документа: $n = 512 \times 32 \times 64 = 2^9 \times 2^5 \times 2^6 = 2^{20}$;
- 2) находим информационную емкость одного символа:
- $R_1 = \log_2 m = 8$ бит (2³ бит);
- 3) информационная емкость документа: $R = nR_1 = 2^{23}$ бит = 2^{20} Б (байт) = 2^{10} КБ (килобайт) = 1 МБ (мегабайт).

ЕДИНИЦЫ ИЗМЕРЕНИЯ ИНФОРМАЦИИ

Двоичные приставки			Обозначения	
Россия, JEDEC, нестандарт.	МЭК с 1999 г.	Множитель	Россия (байт)	МЭК с 1999 г. (бит, байт)
кило (<mark>К</mark>)	киби (Ки)	$1024^1 = 2^{10}$	КБ	Кибит, КиБ
мега (М)	меби (Ми)	$1024^2 = 2^{20}$	МБ	Мибит, МиБ
гига (Г)	гиби (Ги)	$1024^3 = 2^{30}$	ГБ	Гибит, ГиБ
тера (Т)	теби (Ти)	$1024^4 = 2^{40}$	ТБ	Тибит, ТиБ
пета (П)	пеби (Пи)	$1024^5 = 2^{50}$	ПБ	Пибит, ПиБ
экса (Э)	эксби (Эи)	$1024^6 = 2^{60}$	ЭБ	Эибит, ЭиБ
зетта (3)	зеби (Зи)	$1024^7 = 2^{70}$	3Б	Зибит, ЗиБ
йотта (Й)	йоби (Йи)	$1024^8 = 2^{80}$	ЙБ	Йибит, ЙиБ

1 байт = 8 бит

байт (Б)

Исходные данные: –файл с изображением из $n=1024\times 1024$ точек (пикселей) занимает R=0.5 МБ.

Требуется: найти количество цветов *m* в палитре изображения. **Решение:**

- 1) находим число точек изображения: $n=1024\times 1024=$ $=2^{10}\times 2^{10}=2^{20}$;
- 2) находим информационную емкость одного символа:

$$R_1 = R/n = \frac{\frac{1}{2} \cdot 2^{20} \cdot 2^3}{2^{20}} = 4$$
 бит;

3) т.к. $R_1 = \log_2 m$, то $m = 2^{R_1} = 2^4 = 16$ цветов в палитре.

Вероятностный подход

$$A_k \in A, k = \{1, 2, 3, ..., N\},$$
 (1.1.4)

A – множество всех вариантов сообщений;

k – номер варианта сообщения;

$$p_k$$
 – вероятность получения A_k , $0 \le p_k \le 1$ (1.1.5)

$$\sum_{k=1}^{N} p_k = 1$$
 – полная группа событий A_k (1.1.6)

Важность сообщения (Формула Р. Хартли):

$$I_k = \log_2 \frac{1}{p_k} = -\log_2(p_k)$$
, бит (1.1.7)

Энтропия – мера неопределенности информации (средняя важность сообщений):

$$H = \bar{I} = -\sum_{i=1}^{N} p_k \log_2(p_k)$$
, бит. (1.1.8)

Исходные данные: – мощность алфавита m=2, алфавит B={0,1}, число символов в сообщении n=2, т.е. $A = \{a_1, a_2\}, \ k = 0,1;$

k		
1	00	
2	01	
3	10	
4		

Требуется: найти энтропию сообщений H.

Решение:

1)
$$H = -\sum_{i=1}^{N} p_k \log_2(p_k) =$$

= $\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 = 1\frac{3}{4}$ бит.

Исходные данные: – мощность алфавита m=2, алфавит B={0,1}, число символов в сообщении n=2, т.е. $A = \{a_1, a_2\}, \ k = 0,1;$

k		
1	00	
2	01	
3	10	
4		

Требуется: найти энтропию сообщений H.

Решение:

1)
$$H = -\sum_{i=1}^{N} p_k \log_2(p_k) =$$

= $\frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 2 = 2$ бит.

Спасибо за внимание!

Источники информации

- 1. Симонович С.В. Информатика. Базовый курс: Учебник для вузов. СПб: Питер, 2013. 637 с.
- 2. Макарова Н.В., Волков В.Б. Информатика: Учебник для вузов. СПб: Питер, 2011. 576 с.
- 3. Информатика. Теоретические разделы: учебное пособие / Л. А. Бояркина, Л.П. Ледак, А.В. Кревецкий; под ред. А.В. Кревецкого. Йошкар-Ола: Поволжский государственный технологический университет, 2015. 212 с.

Ипатов Юрий Аркадьевич

к.т.н., доцент кафедры информатики ФГБОУ ВО «ПГТУ», г. Йошкар-Ола

ipatovya@volgatech.net