69 научно-методическая и научно-исследовательская конференция

Зенченко В.А., Ширяев А.В.

ФОРМИРОВАНИЕ ГИБКИХ ТЕХНОЛОГИЙ ДИАГНОСТИРОВАНИЯ И РЕМОНТА СИСТЕМЫ ПИТАНИЯ ГАЗОБАЛЛОННЫХ АВТОМОБИЛЕЙ

The formation of flexible technologies of diagnostics and repairing the fuel supply systems of LPG vehicles

1. Актуальность исследования

Использование газового топлива на автомобильном транспорте

Парк газобаллонных автомобилей, работающих на газе сжиженном нефтяном (ГСН), во всём мире устойчиво растёт

Ежегодный рост парка составляет 12-15%, а в некоторых странах более 30%

Аналогичными темпами увеличивается парк ГБА ГСН и в РФ В 2010 году парк ГБА ГСН составил 17,4 млн. автомобилей

Основной рост происходит за счёт переоборудования находящихся в эксплуатации автомобилей

Газовые системы питания с электронным управлением двух видов

Эжекционные

С распределённым впрыском газа

Газовая система питания эжекционного типа с обратной связью и ЭСУД Bosch M1.5.4N

5 – электрический дозатор газа; 6 – переключатель вида топлива с индикацией; 7 – колодка диагностики ЭБУ подачей газа; 8 – редуктор-испаритель; 9 – электропроводка ГСП; 10 – газопровод высокого давления от ЭМК газа до редуктора-испарителя; 11 – электромагнитный клапан газа (ЭМК);

^{12 –} электромагнитный клапан холостого хода; 13 – подогрев редуктора-испарителя; 14 – газопровод высокого давления; 15 – баллон с запорнопредохранительной арматурой; 16 – вентиляционная камера; 17 – выносное заправочное устройство; 18 – обратный клапан (хлопушка); 19 – смеситель; 20 – датчик положения дроссельной заслонки; 21 – датчик температуры охлаждающей жидкости; 22 – датчик концентрации кислорода (лямбда-зонд).

Пример установки газовой системы питания с обратной связью и её элементы

BA3 2110 1 2 3

1- электронный блок управления газовой системы питания

2- смеситель с обратным клапаном

Nissan Almera

3- электронный 4- редуктор-испаритель дозатор газа

Причины неисправностей в эжекционных газовых системах питания и их влияние на состав ОГ

Внутренняя не герметичность

ступени редуктора

(обогащение ТВС)

2. Выход из строя

мембраны

1-ой ступени

1. Засорение

клапана 1-ой

Внешняя не герметичность

1. Не герметичность трубопроводов и их соединений с элементами

ГСП (обеднение ТВС)

- 2. Крепление между собой корпусных деталей редуктора (обеднение TBC)
- 3. Крепление между собой корпусных деталей ЭМК газа (обеднение ТВС)
- 4. Крепление смесителя и дроссельного патрубка (обеднение TBC)
- 5. Крепление мультиклапана к баллону (обеднение ТВС)
- 6. Выход из строя диафрагмы 2-ой ступени (обеднение ТВС)
- 7. Засорение клапана 2-ой ступени (обогащение TBC)

Отсутствие или задержка подачи топлива, задержка воздуха, неисправности датчиков и подсистем ЭСУД, неисправности ГРМ

- 1. Отсутствие ГСН в баллоне (обеднение ТВС)
- 2. Закрытый расходный вентиль мультиклапана (обеднение ТВС)
- 3. Засорение магистрали подачи газа (обеднение ТВС)
- 4. Неисправность ЭМК газа и состояние его фильтрующего элемента (обеднение ТВС)
- 5. Состояние мембран редуктора (обеднение или обогащение ТВС)
- 6. Загрязнение фильтра винта регулировки XX редуктора (обеднение ТВС)
- 7. Положение регулировочных винтов редуктора (обеднение или обогащение ТВС)
- 8. Засорение газового провода от редуктора к смесителю (обеднение ТВС)
- 9. Загрязнение отверстий в смесителе (обеднение ТВС)
- 10. Положение регулировочного винта привода дроссельной заслонки (обеднение или обогащение ТВС)
- 11. Не герметичность ЭМК бензина (обогащение ТВС)
- 12. Неисправность эмулятора форсунок (обогащение ТВС)
- 13. Неисправность электронного дозатора (обеднение или обогащение ТВС)
- 14. Неисправность ЭБУ ГСП (не работает)
- 15. Состояние предохранителей (не работает)
- 16. Обрыв электропроводки (в зависимости от места может привести к выключению системы)
- 17. Засорение воздушного фильтра (обогащение ТВС)
- 18. Неисправность датчика ДПДЗ (обеднение или обогащение ТВС)
- 19. Неисправность датчика кислорода (ДК) (обеднение или обогащение ТВС)
- 20. Неисправность датчика массового расхода воздуха (ДМРВ)
- 21. Неисправности модуля зажигания (М3)
- 22. Неисправности клапанов газораспределительного механизма (ГРМ)
- 23. Неисправность нейтрализатора отработавших газов (обогащение ТВС)

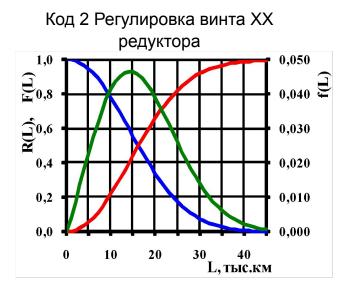
3. Зависание якоря электромагнитного клапана газа (обогащение ТВС)

(обогащение ТВС)

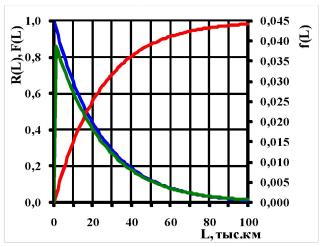
- 4. Залипание поршня электронного дозатора газа (обеднение или обогашение ТВС)
- 5. Износ сальника системы холостого хода редуктора (обогащение ТВС)

Факторы, определяющие токсичность ОГ ГБА

Техническое состояние и настройка элементов газовой системы питания Техническое состояние элементов системы зажигания Токсичность ОГ ГБА Техническое состояние элементов электронной системы управления двигателя (ЭСУД) Общее техническое состояние двигателя и его механизмов (КШМ, ГРМ и др.) Режимы и условия эксплуатации ГБА

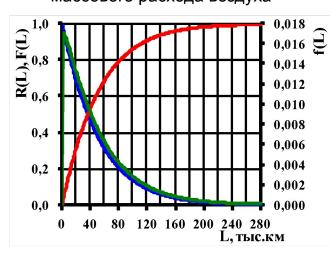


Оценка показателей надёжности элементов ГСП с ЭБУ «Leonardo» и ЭСУД Bosch M1.5.4N ГБА ВАЗ

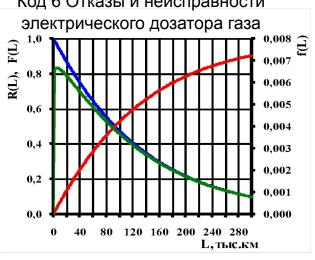

Обозначение элемента / вида работы	Ко д ра бо ты , <i>j</i>	Средняя наработка \overline{L} , т.км.	Средне- квадратичное отклонение $\sigma(L)$	Коэфф. вариации $ u(\mathrm{L})$	Гамма- процентная наработка L_{γ} , т.км. $\gamma=0.90$ / $\gamma=0.95$	Вид закона распре- деления	Общие затраты на обслуживание и ремонт, S_j руб.	Значения ведущих функций потока отказов на гарантийном пробеге, $L_{\it g}$ $\Omega_{\it f}(L_{\it g})$	Удельные затраты на обслуживание и ремонт, руб. $S_{y\partial j}$
ГСП в целом		6,03	3,2	0,531	2,24 / 1,567	В			
Воздушный фильтр/замена	1	17,95	6,641	0,37	9,45 / 7,06	Н	160	2,911	7,763
Винт холостого хода редуктора/ регулировка	2	17,03	8,432	0,495	6,66 / 4,75	В	350	3,146	18,35
Фильтр клапана холостого хода/ очистка	3	35,57	10,766	0,303	21,9 / 17,91	Н	90	1,233	1,849
Фильтр электромагнитного клапана газа/замена	4	28,34	5,35	0,189	21,49 / 19,57	н	570	1,635	15,533
Мембраны и клапаны редуктора/ проверка замена	5	35,61	6,87	0,193	27,02 / 24,34	н	4610	1,204	92,472
Электронный дозатор газа/проверка, замена	6	130,58	127,9	0,98	15,18 / 7,6	В	2100	0,440	15,389
Датчик кислорода/ проверка, замена	7	68,39	16,193	0,237	47,68 / 41,83	н	1300	0,405	8,784
Датчик положения дроссельной заслонки /проверка, замена	8	24,3	24,4	1,0	2,62 / 1,28	В	900	2,469	37,037
Датчик массового расхода воздуха/ проверка, замена	9	50,95	49,9	0,98	5,92 / 2,96	В	2750	1,158	53,067
Нейтрализатор ОГ / проверка, замена	10	73,99	72,47	0,98	8,6 / 4,3	В	3600	0,791	47,467
Винт клапана второй ступени редуктора / регулировка	11	22,524	9,636	0,38	10,3 / 7,7	В	350	2,236	13,044
Клапаны ГРМ /замена , притирка, регулировка	12	91,27	37,1	0,36	44,2 / 33,78	В	5640	0,222	20,886
Модуль зажигания / проверка, замена	13	27	6,423	0,237	18,78 / 16,47	Н	1700	1,750	49,592

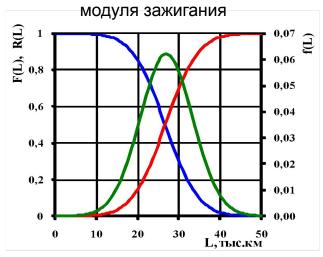
Закономерности распределения наработок на отказы и неисправности элементов газовой системы питания и ЭСУД

Код 8 Отказы и неисправности датчика положения дроссельной заслонки



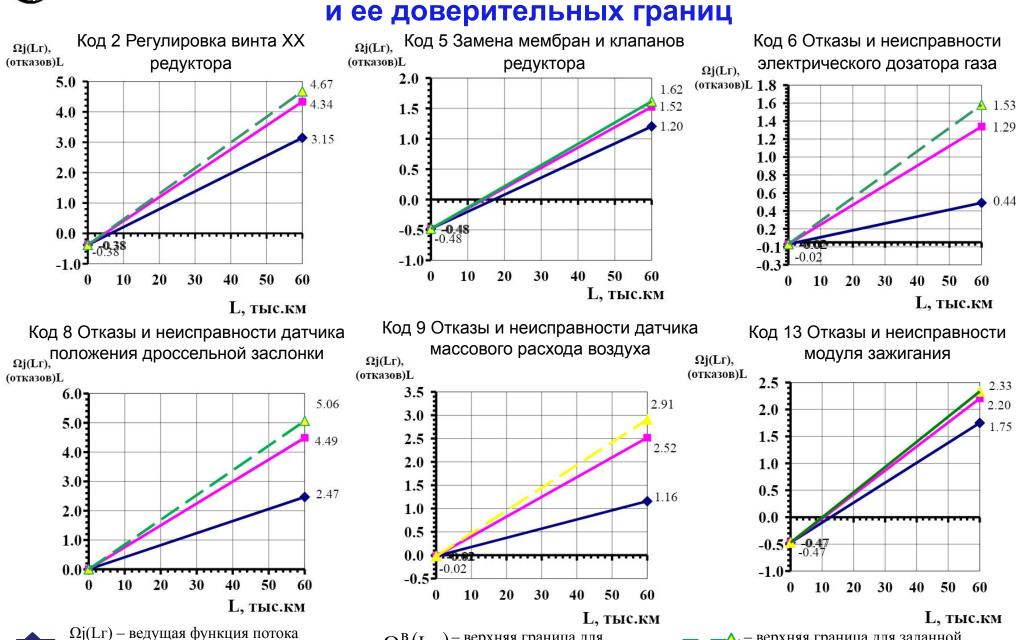
-f(L) плотность распределения вероятности возникновения отказов




Код 9 Отказы и неисправности датчика массового расхода воздуха

Код 6 Отказы и неисправности

Код 13 Отказы и неисправности



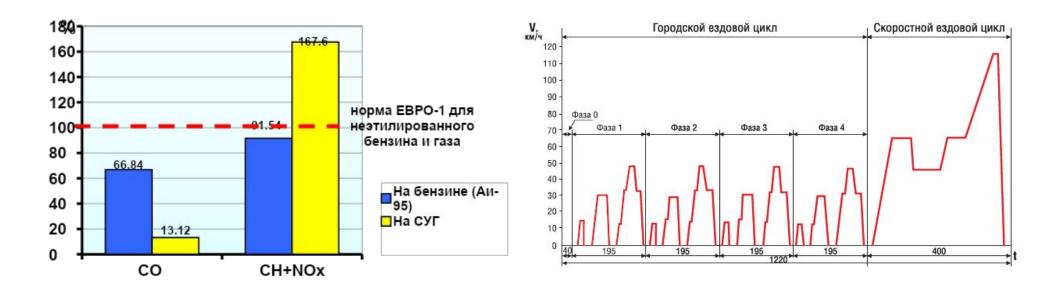
F(L) вероятность возникновения отказа;

R(L) вероятность безотказной работы.

єимптотические зависимости для ведущей функции потока отказов

и ее доверительных границ

заданной вероятности у=0,9


отказов на пробеге Lг

верхняя граница для заданной вероятности $\gamma = 0.95$

9

4. Токсичность ОГ ВАЗ-21113 при испытании по ездовому циклу ГОСТ Р 41.83 -1999

Автомобиль соответствует требованиям ГОСТа на бензине и <u>не соответствует</u> на газе.

По сравнению с бензином выбросы СО на газе меньше в 5 раз, а по сумме СН и $NO_{\rm x}$ больше в 2 раза, а не наоборот, как принято считать.

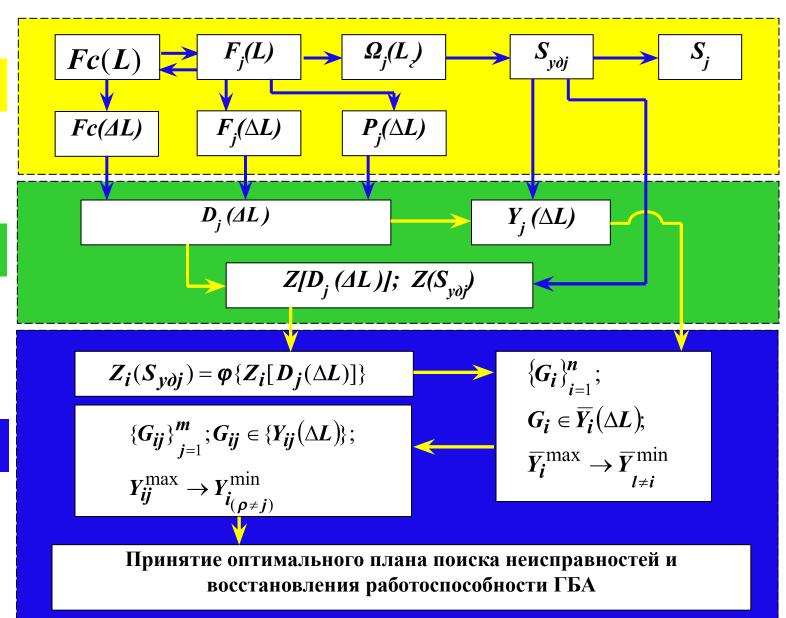


Схема процесса формирования *оптимальных* планов поиска и устранения отказов и неисправностей

2-й этап

3-й этап

Аналитические зависимости формирования оптимальных планов поиска и устранения отказов и неисправностей

1-й этап

Вероятности возникновения неисправностей и отказов на интервале пробега (ΔL)

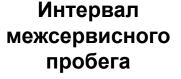
$$F_{j}(\Delta L) = F_{j}(L_{r+1}) - F_{j}(L_{r})$$

где r – индекс очередного обращения ГБА на обслуживание или ремонт

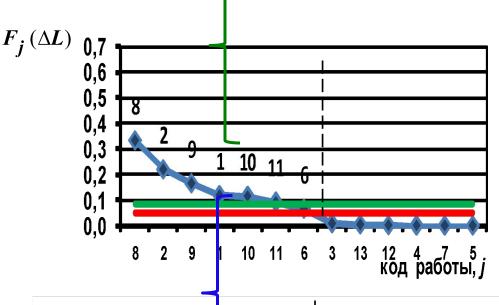
Пороговое значение для выявления наиболее значимых работ с заданной вероятностью α (нижняя доверительная граница) на интервале пробега (ΔL)

$$\overline{F}_{\alpha j}^{H}(\Delta L) = M[F(\Delta L)] - Z_{\alpha} \frac{\sigma[F(\Delta L)]}{\sqrt{m}}$$

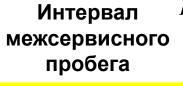
где $M[F(\Delta L)]$ - оценка математического ожидания множества значений $\left\{ \pmb{F_j}(\Delta \pmb{L}) \right\}$


$$\sigma[F(\Delta\!L)]$$
 - оценка среднеквадратичного отклонения $F_j(\Delta\!L)$

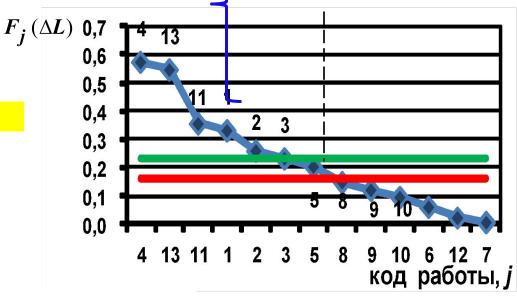
 Z_{lpha} - нормированная случайная величина для заданной доверительной вероятности α ;


m – общее число кодов работ

Изменения вероятностей возникновения отказов F_{j} (ΔL) на интервале пробега ΔL



L= 0-10 T.KM.



Группа приоритетных кодов по *Fj (△L)* на интервале L = 0-10 т.км

8, 2, 9, 1, 10, 11, 6

L= 20-30 т.км.

Группа приоритетных кодов по *Fj (△L)* на интервале L = 20-30 т.км

4, 13, 11, 1, 2, 3, 5

Аналитические зависимости формирования оптимальных планов поиска и устранения отказов и неисправностей

2-й этап

Диагностическая ценность обследования

$$D_{j}(\Delta L) = -[F_{j}(\Delta L)\log_{2}\frac{F_{j}(\Delta L)}{F_{c}(\Delta L)} + P_{j}(\Delta L)\log_{2}\frac{P_{j}(\Delta L)}{F_{c}(\Delta L)}]$$

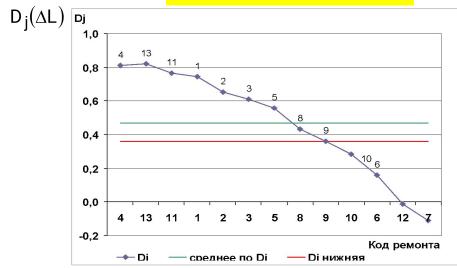
- $F_c(\Delta L)$ вероятность возникновения отказов для всей совокупности объектов по газовой системе питания и элементам ЭСУД на интервале пробега ΔL ;
- $P_{m{j}}(\Delta L)$ вероятностей безотказной работы элементов газовой системы питания и элементов ЭСУД с ${\it j}$ -ми кодами на интервале пробега ΔL ;

Интегральная оценка учета диагностической ценности

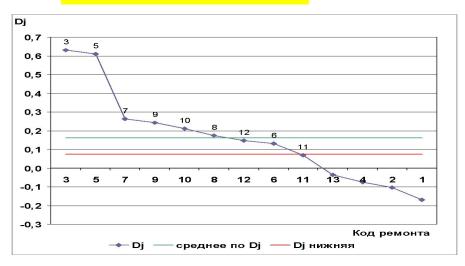
и удельных затрат


$$Y_{m{j}}(\Delta L) = egin{cases} ar{Y}_{m{j}}(\Delta L) = m{D}_{m{j}}(\Delta L) \cdot ar{S}_{y \partial m{j}}, & ext{-для средних значений удельных затрат,} \ Y_{m{j}}^{m{e}}(\Delta L) = m{D}_{m{j}}(\Delta L) \cdot m{S}_{y \partial m{j}}^{m{e}}, & ext{-для верхних толерантных границ} \ \text{удельных затрат} \end{cases}$$

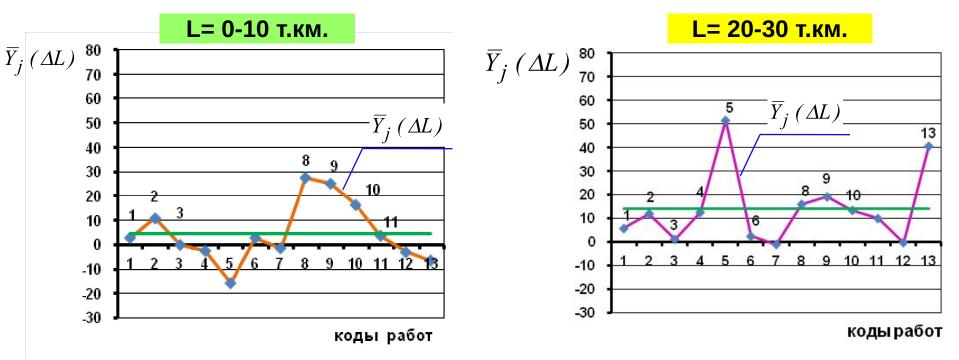
 $S_{\it voi}$ - средние удельные затраты



Диагностическая ценность обследования технического состояния ГСП и ЭСУД на разных пробегах ГБА


L= 0-10 T.KM.

L= 20-30 т.км.

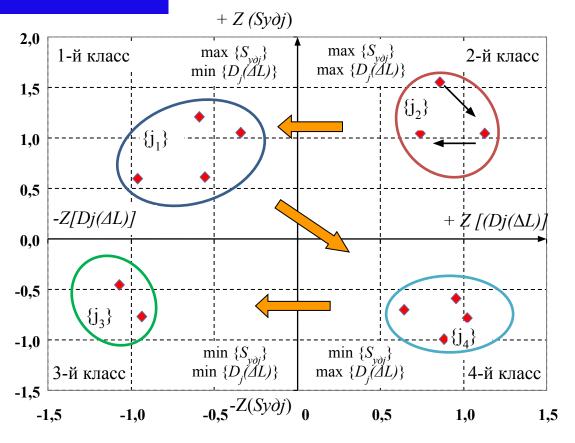

L= 40-50 т.км.

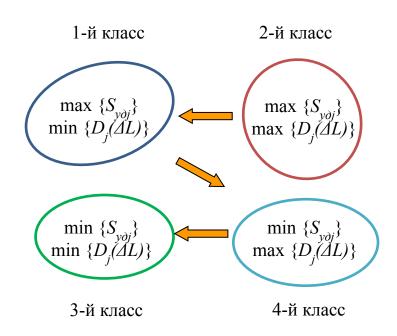
Интегральная оценка диагностической ценности обследования технического состояния Y_i(∆L) и удельных затраты Syд_i на разных пробегах ГБА

Интервалы межсервесного пробега

Группа приоритетных кодов по \overline{Y}_{j} (ΔL) на интервале L = 0-10 т.км

2, 8, 9, 10


Группа приоритетных кодов по \overline{Y}_{j} (ΔL) на интервале L = 20-30 т.км


5, 8, 9, 13

Классификация кодов работ на основе нормировки удельных затрат Ѕуд_і и диагностической ценности D_і (△L)

3-й этап

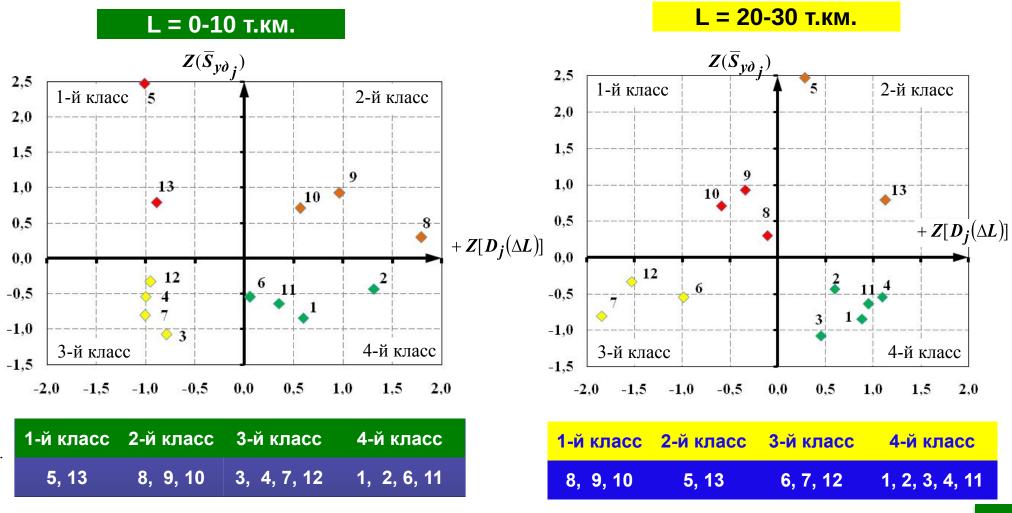

Классификация кодов работ $\{j\}_1^m$ на основе нормировки затрат $S_{y\partial j}\in (\overline{S}_{y\partial j}, \cap S_{y\partial j}^g)$ и диагностической ценности $D_j(\Delta L)$

Схема приоритетности выполнения групп работ по обслуживанию и ремонту ГСП и ЭСУД

Классификация исходного множества кодов работ на основе нормировки значений затрат Ѕудј и диагностической ценности Dj(∆L) на разных пробегах ГБА

Интервалы межсервесного пробега

Сформированны е классы	Обозначение кодов работ	Коды работы	Интегральная оценка ценности и удельных затрат $\overline{Y}_{j}(\Delta L)$	Порядок диагностирования по $\overline{Y}_j(\Delta L)$	ожидание для	Приоритетность классов выполнения работ по $M[Y_j(\Delta L)]$	
---------------------------	----------------------------	----------------	---	--	--------------	---	--

L= 0-10 T.KM.

1	Зам. Мемб. и Кл. Р	5	-15,953	2	-11,2575	4
	Зам.М.З.	13	-6,562	1		
2	Зам. ДПДЗ	8	27,598	1	23,0191	1
	Зам. ДМРВ	9	25,165	2		
	Зам. НОГ	10	16,295	3		
3	ОЧФКл ХХР	3	-0,187	1	-1,8837	3
	Зам. ФЭМКГ	4	-2,633	3		
	Зам. ДК	7	-1,511	2		
	Зам. клапанов ГРМ с регул.	12	-3,204	4		
4	Зам. ВФ	1	2,741	3	4,9514	2
	Per.BXXP	2	10,781	1		
	Зам. ЭДГ	6	2,719	4		
	Per.BK2P	11	3,564	2		

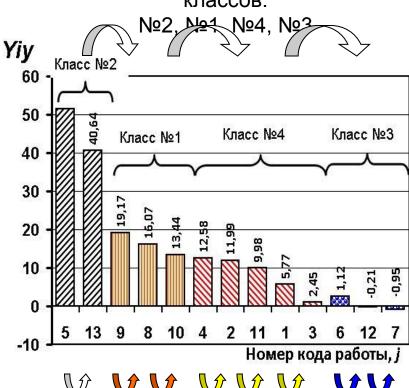
Сформированны Обозначение Коды е классы кодов работ работы	Интегральная оценка ценности и удельных затрат $\overline{Y}_j(\Delta L)$	порядок диагностирования	ожидание для	Приоритетность классов выполнения работ по $M[\overline{Y}_j(\Delta L)]$	
---	---	-----------------------------	--------------	--	--

L= 20-30 т.км.

	Зам. ДПДЗ	8	16,073	2	16,229	2
1	Зам. ДМРВ	9	19,174	1		
	Зам. НОГ	10	13,440	3		
2	Зам. Мемб. и Кл. Р	5	51,555	1	46,0975	1
	Зам.М.З.	13	40,640	2		
3	Зам. ЭДГ	6	2,453	1	0,4300	4
	Зам. ДК	7	-0,953	3		
	Зам. клапанов ГРМ с регул.	12	-0,210	2		
4	Зам. ВФ	1	5,771	4	8,292	3
	Per.BXXP	2	11,997	2		
	ОЧФКл ХХР	3	1,127	5		
	Зам. ФЭМКГ	4	12,579	1		
	Per.BK2P	11	9,986	3		

Сформиров е классы		Обозначение кодов работ	Коды работы	Интегральная оценка ценности и удельных затрат $\overline{Y}_j(\Delta L)$	Порядок диагностирования	ожидание для	Приоритетность классов выполнения работ по $M[Y_j(\Delta L)]$
-----------------------	--	----------------------------	----------------	---	--------------------------	--------------	---

L= 40-50 т.км.


1	Зам.М.З.	13	-1,792	1	-1,7920	4
2	Зам. Мемб. и Кл. Р	5	56,344	1	21,4333	1
	Зам. ДПДЗ	8	6,475	4		
	Зам. ДМРВ	9	12,872	2		
	Зам. НОГ	10	10,041	3		
3	Зам. ВФ	1	-1,313	1	0,2675	3
	Per.BXXP	2	-1,925	6		
	Зам. ФЭМКГ	4	-1,155	5		
	Зам. ЭДГ	6	2,002	3		
	Per.BK2P	11	0,905	4		
	Зам. клапанов ГРМ с регул.	12	3,092	2		
4	ОЧФКл ХХР	3	1,165	2	1,7370	2
	Зам. ДК	7	2,309	1		

Интервалы межсервесного пробега

Порядок диагностирования классов:

Порядок выполнения работ внутри классов

L = 40-50 T.KM.

Порядок диагностирования классов: №2, №4, №3, №1

Направление диагностирования

Технология диагностирования и ремонта системы питания и ЭСУД ГБА

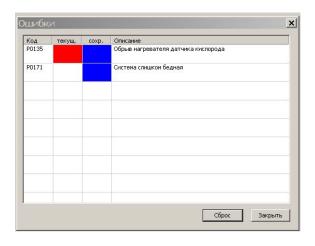
Предварительный этап

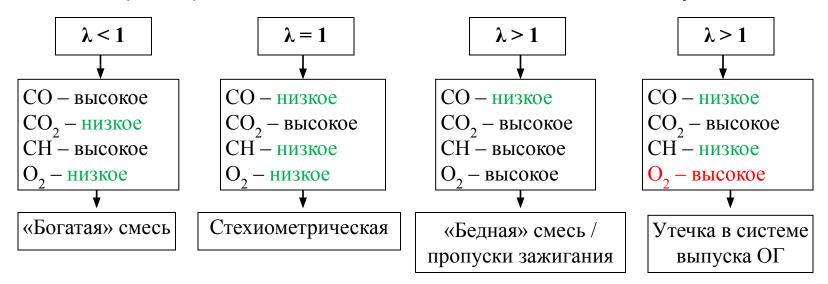
1. Проверка герметичности газовой системы питания с помощью:

Течеискателя

Мыльного раствора

2. Считывание кодов ошибок с газового ЭБУ




Предварительный этап технологии диагностирования

3. Считывание ошибки с бензинового ЭБУ

4. Определение содержания СО, СН, СО2, О2 и λ после нейтрализатора и сделать предварительный вывод о качестве топливно-воздушной смеси

Технология диагностирования

5. Определить направление дальнейших контрольно-диагностических работ

6. Определить приоритетность выполнения контрольно-диагностических работ в соответствии с накопленным ГБА пробегом по

ОПТИМАЛЬНЫМ планом поиска для этого межсервисного пробега

Заключительный этап технологии диагностирования

- 7. Устранить неисправности
- 8. Определение содержания СО, СН, СО2, О2 и λ после нейтрализатора
- 9. Повторно прочитать ошибки с ЭБУ ГСП и ЭБУ Bosch и сделать вывод о качестве топливно-воздушной смеси и работоспособности системы питания и управления

