

Материалы к урокам и факультативным занятиям для 11класса

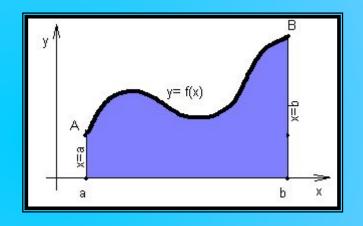
Учитель ГБОУ гимназии № 49 Приморского района Санкт-Петербурга Алексеевой Людмилы Васильевны

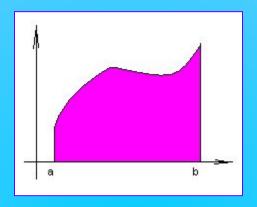
«Если имеются две неравные площади, то, постоянно прибавляя к самому себе избыток, на который большая площадь превосходит меньшую, можно получить площадь, которая была бы больше любой заданной ограниченной площади.» Архимед

Определение.

Криволинейной трапецией

называют фигуру, ограниченную графиком непрерывной функции, заданной на отрезке [a;b] и принимающей на нем положительные значения, отрезками прямых х=а и х=в и отрезком [a;b] оси абсцисс.



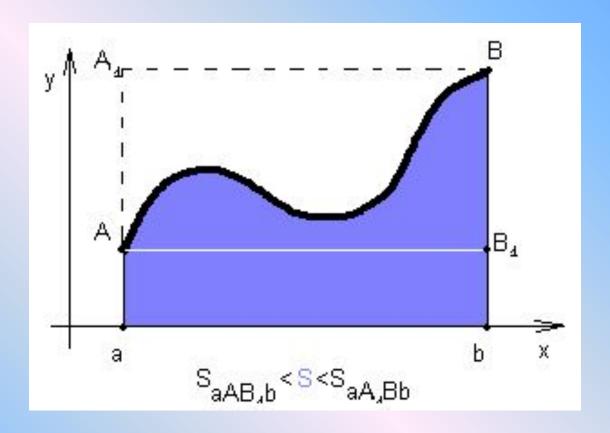


Найти площадь криволинейной трапеции можно

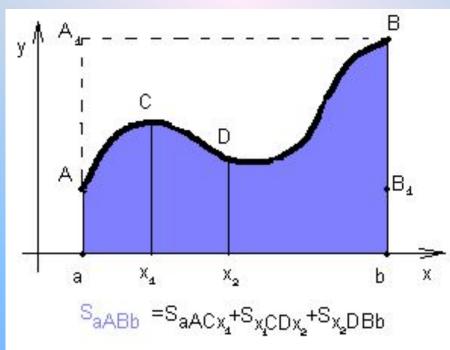
Оспособом последовательных приближений

Оспособом составления интегральных сумм

Писпользуя определенный интеграл

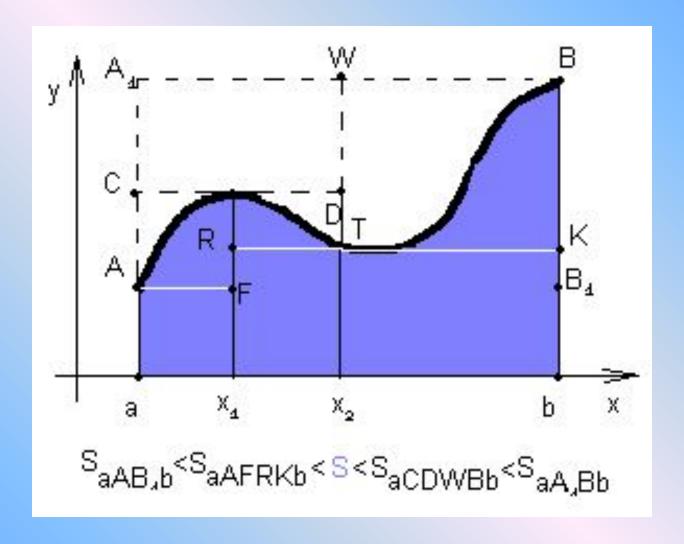


Очевидно, площадь заштрихованной фигуры больше, чем площадь прямоугольника aAB_1b и меньше, чем aA_1Bb .



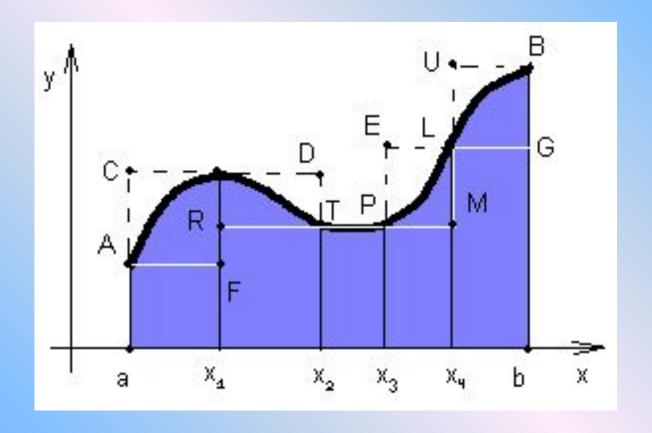
Однако, такая оценка имеет очень большую погрешность.

опытаемся уточнить комую величину, для этого помним известный из ометрии прием нахождения ощади, разобьем ссматриваемую фигуру на сти: проведем несколько вертикальных прямых $x=x_1$, $X=X_2$.



Теперь наша трапеция разбита на три трапеции.

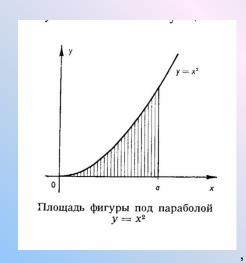
Еще больше уточним площадь трапеции ...

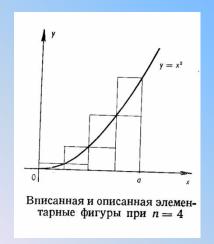


...и так далее

Рассмотрим пример:

Найти площадь под кривой, заданной графиком функции y=x2





площадь прямоугольников над параболой

$$a^3 \frac{2n^3 + 3n^2 + n}{6n^3}$$

площадь прямоугольников под параболой

$$a^3 \frac{2n^3 - 3n^2 + n}{6n^3}$$

Отсюда, если $n \rightarrow \infty$, получаем

$$S = \frac{a^3}{3}$$

примечание

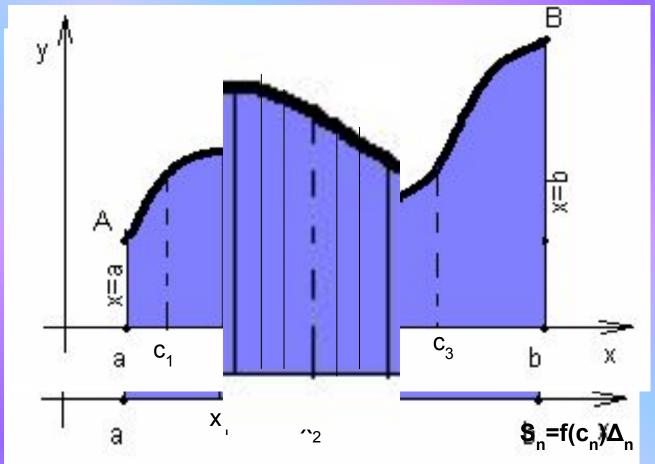
Нахождение суммы последовательности квадратов натуральных чисел

справедлива формула

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(n+2)}{6}$$

доказательство можно провести по индукции

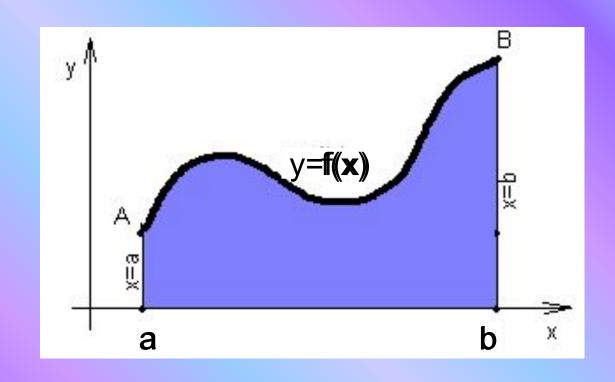
Составление интегральной суммы



Уменьшая шаг разбиения Δn , приближаем значение суммы $S_1 + S_2 + \dots$ к значению S разбовем площады площады каждой части При $n \to \infty$ $\Delta n \to 0$ $S_1 + S_2 + \dots + S_n \to S$. Это можно записать математически

Вычисление площади криволинейной трапеции

с помощью определенного интеграла



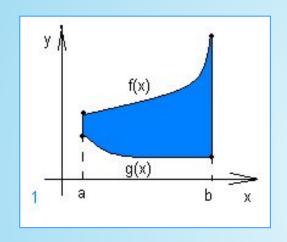
Вычисление определенного интеграла.

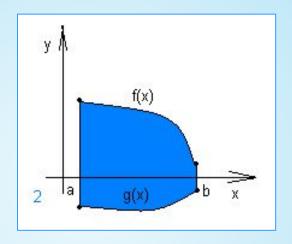
$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Формула Ньютона – Лейбница

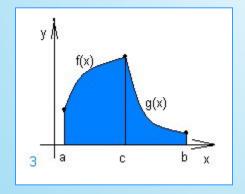
Попробуйте сами

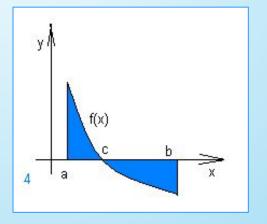
Сконструировать формулу для вычисления площади фигур



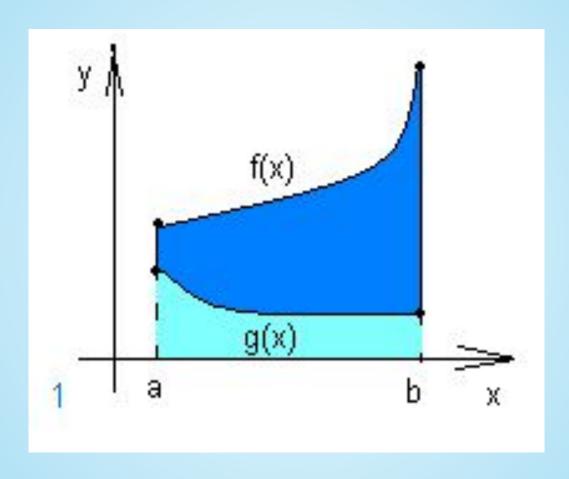


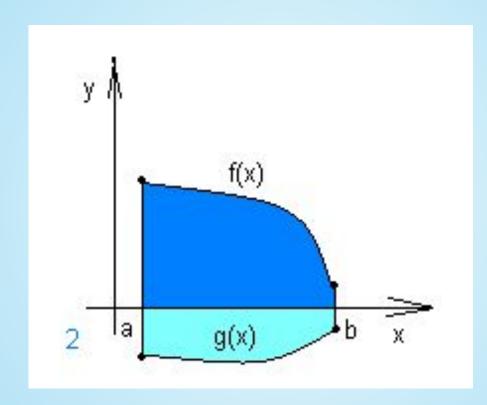
Если затрудняетесь, воспользуйтесь подсказкой

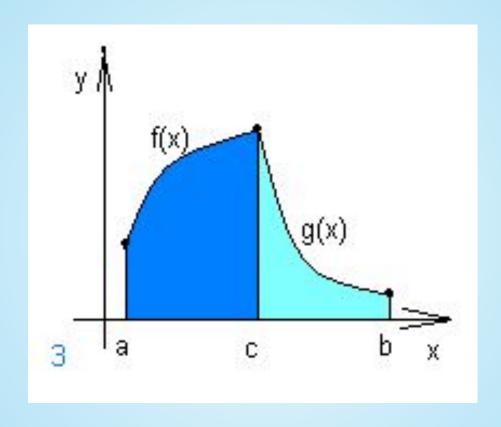


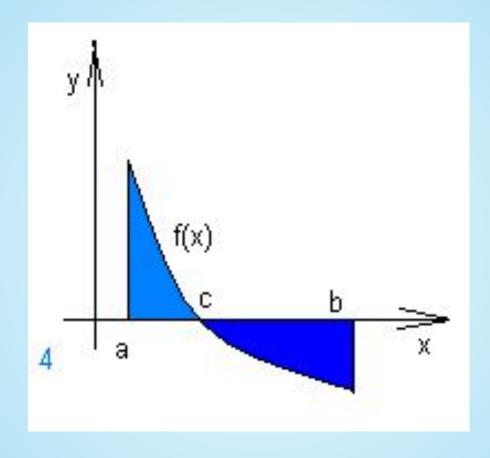


Проверьте себя по **ответам**









Проверь себя

1.
$$S = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx = \int_{a}^{b} (f(x) - g(x))dx$$

2.
$$S = \int_{a}^{b} (f(x) - g(x)) dx$$
 3. $S = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$

$$4. S = \int_{a}^{b} f(x) dx$$

Ура! Получилось!

Молодец!!!