

Печатные платы и технологии их изготовления

История печатных плат

Альберт Хансон (1902 г.) – аддитивный метод.

Штамповка или вырезание изображения на бронзовой (или медной) фольге. Получившийся проводящий слой наклеивался на диэлектрик — бумагу, пропитанную парафином.

Артур Берри (1913 г.) – субтрактивный метод.

Покрытие на металлическую основу слой резистного материала и травлением убирать незащищенные части с поверхности.

Макс Скуп (1918 г.) – аддитивный метод.

Технология газопламенного напыления металла.

Эллис Бассит (1922 г.) – субтрактивный метод.

Методика использования светочувствительных материалов при производстве печатных плат.

История печатных плат

Томас Эдисон (1920-1930 гг.) - идеи

- 1. Рисунок формируется при помощи адгезивных полимеров путём нанесения на их не застывшую поверхность измельченного в пыль графита или бронзы.
- 2. Рисунок формируется непосредственно на диэлектрике. Для нанесения изображения используется ляпис (нитрат серебра), после чего серебро просто восстанавливается из соли.
- 3. Проводником является золотая фольга с нанесенным на нее рисунком.

Чарльз Дуклас (1925-1930 гг.)

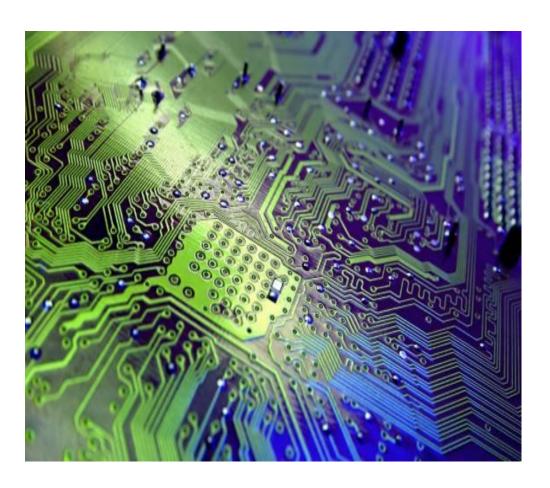
Технология металлизации проводников. Технология травления, подразумевающая электролитическое осаждение металла (серебра, золота или меди) через контактную маску на пластину из низкотемпературного сплава.

История печатных плат

Цезарь Паролини (1926 г.) – аддитивный метод.

Нанесение на диэлектрик изображения посредством клеящего материала с напылением на него медного порошка и полимеризация под воздействием высокой температуры.

Эрвин Франц (1933 г.) – субтрактивный метод.


Нанесение токопроводящего рисунка на целлофановую пленку, для чего испопользовался жидкий полимер с графитовым наполнением.

Пауль Эйслер (1948 г.)

Основал предприятия по изготовлению печатных плат - Technograph Printed Circuits. Имеет свыше 50 патентов. Усовершенствовал технологические процессы в производстве печатных плат. Сделал массовое производство печатных возможным.

Основные термины и определения

Печатная плата (англ. printed circuit board, PCB) — материал основания, вырезанный по размеру, содержащий необходимые отверстия и, по меньшей мере, один проводящий рисунок.

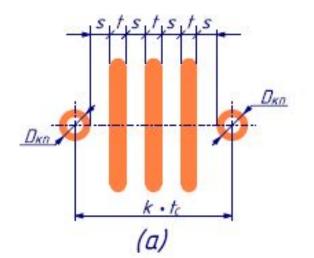
Рисунок печатной платы — конфигурация проводников и (или) диэлектрического материалов на печатной плате.

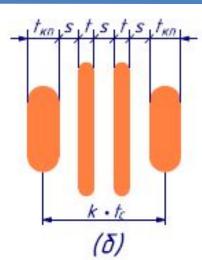
Узкое место печатной платы — участок печатной платы, где элементы проводящего рисунка и расстояния между ними могут быть выполнены только с минимально допустимыми значениями.

Классы точности печатных плат

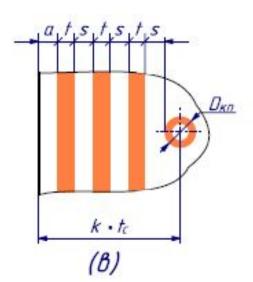
Условное обозначение	Номинальное значение параметров для классов точности, мм						
параметра ПП	1-й класс	2-й класс	3-й класс	4-й класс	5-й класс	6-й класс	7-й класс
t, MM	0,75	0,45	0,25	0,15	0,10	0,075	0,050
S, MM	0,75	0,45	0,25	0,15	0,10	0,075	0,050
b, MM	0,30	0,20	0,10	0,05	0,025	0,020	0,015
Y = d/H	0,40	0,40	0,33	0,25	0,20	0,15	0,10
$\triangle t$, MM	±0,15	±0,10	±0,05	±0,03	0; -0,03	0; -0,02	0; -0,015

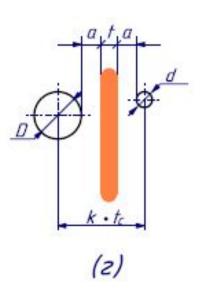
t - минимальная ширина сигнального проводника;


Y – отношение диаметра наименьшего металлизированного отверстия d κ толщине ПП H; $\triangle t$ – допуск на ширину проводника, контактной площадки или любого другого элемента проводящего рисунка.



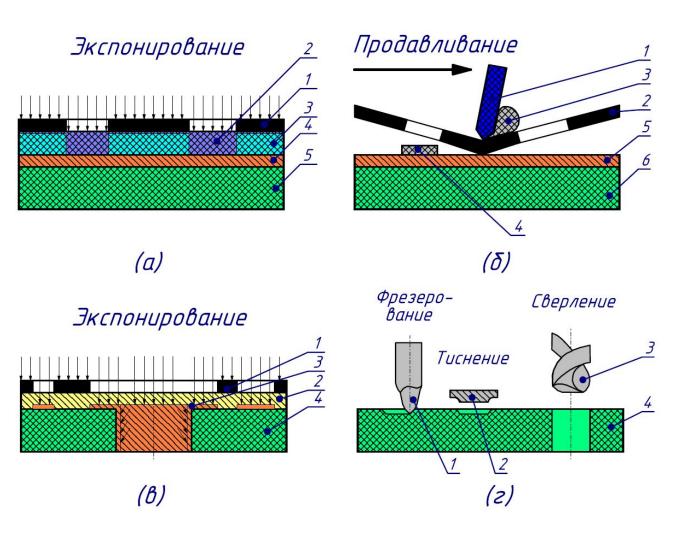
s - минимальное расстояние между проводниками или любыми элементами проводящего рисунка;


b – минимальная ширина крулой контактной площадки (гарантированный поясок, определяющий ее целостность:


Узкие места проводящего рисунка ПП

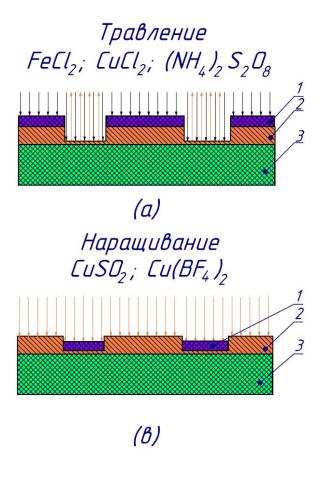
- (а) между соседнимим круглыми КП;
- (б) между планарными КП;
- (в) между КП и краем ПП;
- (г) между двумя неметаллизированными отверстиями.

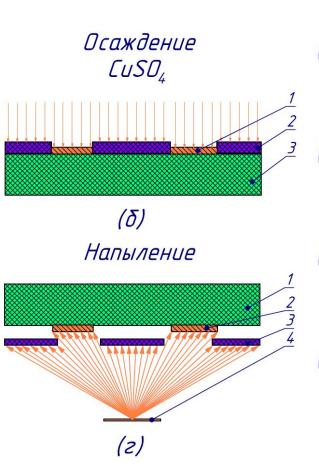
- t минимальная ширина проводника;
- t_{кп} ширина планарной КП;
- s минимальное расстояние между элементами;
- а минимальное расстояние между элементом и краем ПП;
- $k \bullet t_c$ расстояние, кратное шагу координатной сетки;
- $D_{\kappa n}$ диаметр круглой $K\Pi$;
- D, d диаметры неметаллизированных отверстий


Наименование печатной платы	Поперечный разрез ПП (эскиз)	Конструкторско-технологические особенности	Толщина исходного материала
1. Односторонняя с монтажными отверстиями	t s $D_{\kappa n}$	Проводящий рисунок выполнен на одной стороне фольгированного основания. Монтажные отверстия (d) не металлизированны.	0,8; 1,0; 1,5; 2,0; 2,5; 3,0
2. Односторонняя без монтажными отверстиями		Выполнена на фольгированном основа- нии и предназначена для монтажа КМП. При малой толщине основания может быть внутренним слоем МПП.	0,8; 1,0; 1,5; 2,0; 2,5; 3,0

Наименование печатной платы	Поперечный разрез ПП (эскиз)	Конструкторско-технологические особенности	Толщина исходного материала
3. Двусторонняя на диэлектрическом основании	d _{MO}	Проводящий рисунок выполнен на двух сторонах фольгированного основания и электрически соединен металлизированными отверстиями. Предназначен для монтажа КМО и КМП.	0,8; 1,0; 1,5; 2,0; 2,5; 3,0
4. Двусторонняя без монтажных отверстий		Выполнена на фольгированном основа- нии и предназначена для монтажа КМП. При малой толщине основания может быть внутренним слоем МПП.	0,1; 0,12; 0,13; 0,15; 0,2; 0,25; 0,3; 0,35

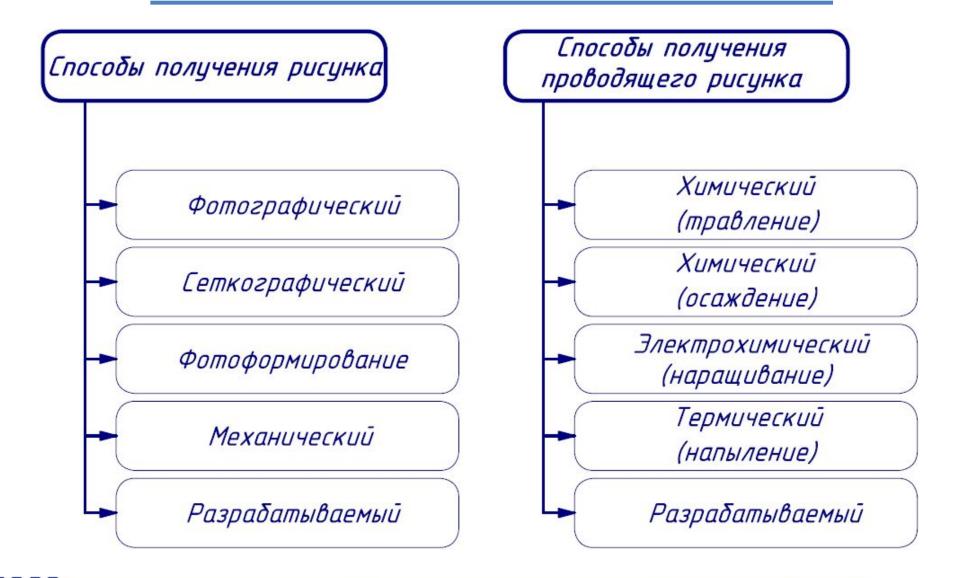
Наименование печатной платы	Поперечный разрез ПП (эскиз)	Конструкторско-технологические особенности	Толщина исходного материала
5. Многослойная печатная плата с металлизацией сквозных отверстий и внутренними межслойными переходами	1 2 3 4 5 6	Количество слоев теоретически не ограничено. Внутренние переходы (2-3; 4-5) сокращают длину сигнальных цепей.	Н _{пп} определяется количеством слоев и прокладок
6. Многослойная печатная плата с наращиваемыми слоями (структуры HDI): структура 1 - п - 1	$\frac{1}{d_{20}}$	Основа платы – п слоев, полученных методомметаллизации сквозных отверс-тий. Структуры НОІ получены наращиванием одного, двух или трех слоев на наружных слоях МПП. Слои имеют высокую плотность проводящего рисунка. Глухие, скрытые и внутренние микропереходы. МПП позволяют электрически соединить современные ИМС с большим количеством выводов и малым шагом между ними.	Н _{пп} определяется количеством слоев и прокладок


Наименование печатной платы	Поперечный разрез ПП (эскиз)	Конструкторско-технологические особенности	Толщина исходного материала
7. Гибкая печатная плата		Выполнена на тонком эластичном фольгированном основании, может быть изогнута с определенным радиусом.	0,1; 0,12; 0,13; 0,15; 0,2; 0,25; 0,3; 0,35; 0,5
8. Гибко-жесткая печатная плата		В единой конструкции объединены жесткие МПП (1, 3), связанные электри-чески гибким печатным кабелем-шлейфом (2). ГПК опрессован в составе слоев МПП (1, 3). Важно, чтобы количество слоев (высота) жестких МПП были равны.	


Способы получения рисунка

- (а) фотографический способ:
 - 1 фотошаблон;
 - 2 маска (экспонированные участки);
 - 3 фоторезист;
 - 4 медная фольга;
 - 5 основание ПП.
- (δ) сеткографический способ:
 - 1 ракель;
 - 2 сетчатый трафарет;
 - 3 запас краски;
 - 4 маска из краски;
 - 5 медная фольга;
 - 6 основание ПП.
- (в) способ фотоформирования:
 - 1 фотошаблон;
 - 2 водный раствор солей металлов;
 - 3 тонкий проводящий рисунок;
 - 4 основание ПП (нефольгировано).
- (г) механический способ:
 - 1 фреза;
 - 2 пуансон;
 - 3 сверло;
 - 4 основание ПП (нефольгировано).

Способы получения проводящего рисунка



(а) – травление медной фольги: 1 - маска; 2 - проводящий рисунок - фольга; 3 - основание ПП. (δ) – химическое осождение меди: 1 – проводящий рисунок из осажденной меди; 2 - маска; 3 - основание ПП. (в) – гальваническое наращивание: 1 - маска; 2 - проводящий рисунок - осажденная медь; 3 - основание ПП (г) – термическое вакуумное напыление меди: 1 - основание ПП; 2 – проводящий рисунок – напыленная медь;

3 – трафарет;

4 - *MUZEN*b.

Методы изготовления печатных плат

Технологические методы изготовления ПП

Технологии изготовления ПП

- 1. Химический метод
- 2. Комбинированный позитивный метод
- 3. Тентинг-метод
- 4. Электрохимический (полуаддитивный) метод
- 5. Фотоаддитивный метод
 - Разрабатываемый

- 1. Образование проводящего рисунка путем удаления (травления) фольги в зонах образующих непроводящий рисунок, т.е. в зонах пробельных мест. При этом будиций проводящий рисунок защищает маска из фоторезиста, нанесенного фотоспособом, или из краски, нанесенной сеткографический способом.
- 2. Осаждение меди на стенки металлизируемых отверстий и удаление меди с пробельных мест двух проводящих слоев, предварительно образовав защитную слоем металлорезиста.
- 3. Менее трудоемкий для производства ДПП. Основная особенность защита проводящего рисунка при травлении меди с пробельных мест не слоем металлорезиста (Sn, Sn-Pb), а слоем фоторезиста, который в зоне металлизированных отверстий образует тент (завеску). Технология комбинированного метода при этом видоизменяется.
- 4. Химическое и гальваническое осаждение меди на нефольгированный диэлектрик. Позволяет получать печатные платы высоких классов точности. Использование им-мерсионных покрытий контактных площадок, что обеспечивает высокое качество пайки выводов ИМС с малым шагом.
- 5. На нефольгированную заготовку наносят раствор, содержащий соли металлов и обладающий фотосвойствами. Высушенный раствор экспонируют УФ-излучением через негативный фотошаблон. Применение гальваники невозможно из-за отсутс-твия электрического контакта у элементов проводящего рисунка. Основное преимущество изготовление ПП любого класса точности.

СПАСИБО ЗА ВНИМАНИЕ!