

Информатика

Общая формальная схема процесса постановки и решения задачи состоит из следующих этапов:

- 1. формулирования предметной задачи;
- 2. формализации задачи;
- 3. выбора способа решения;
- 4. решения задачи на ЭВМ;
- 5. формального анализа результатов;
- содержательной интерпретации результатов.

Формулирование предметной задачи включает указание:

<u>цели</u> (предвосхищение в мышлении результата деятельности, нет смысла говорить о задаче, если четко не сформулирована цель);

представлений о модели объекта исследования (поиска);

исходных данных;

<u>ожидаемого результата и формы его представления</u> (результат должен быть конкретным и соответствовать цели);

критериев оценки ожидаемого результата (от критерия оценки результата зависит выбор подхода к решению задачи; его отсутствие приводит к случайному выбору метода решения задачи и к последующей неинтерпретируемости результата).

Пример формулировки задачи №1 Вы хотите открыть собственный бизнес — открыть Интернет-кафе.

Цель: выбрать помещение для аренды под Интернет-кафе.

Представления о модели: основные соображения при выборе места такие:

- •самое удачное для компьютерного клуба место на перекрестке дорог в большом компактном жилом массиве, где много школ, институтов, училищ и т.п. (основной ориентир молодежь 10–18 лет);
- •в жилом доме клуб делать нежелательно, поскольку местные жители обязательно будут жаловаться (клуб должен быть круглосуточным);
- •вблизи от этого места нет подобных конкурирующих заведений;
- •размеры помещения должны позволять разместить 15-17 компьютеров, иначе не рентабельно (из санитарных норм не менее 6 кв.м на компьютер).

Исходные данные: карта с обозначенными на ней жилыми массивами; транспортной сетью; учебными заведениями; существующими компьютерными клубами; сдаваемыми в аренду помещениями (и их площадями).

Результат: сдаваемые в аренду помещения должны быть разбиты на два класса — подходящие и неподходящие, подходящие должны быть упорядочены — от более удачных вариантов к менее удачным.

Критерий оценки: посещаемость кафе во все время его работы должна составлять не менее 80%.

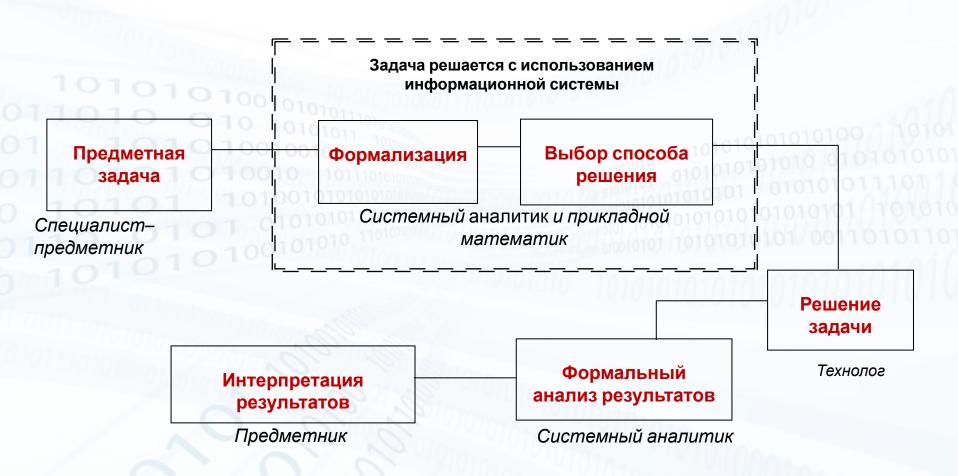
Пример формулировки задачи №2

Семья хочет приобрести участок земли, но не может определить какой из семи предложенных участков является лучшим для покупки.

Цель:?

Представления о модели:?

Исходные данные: для семи продаваемых участков известны удаленность от жилья, качество почвы, близость водоемов, наличие дома и сада (плодовых деревьев). Данные представлены в таблице.


Объекты	Удалённость от города	Качество почвы	Наличие водных источников	Наличие дома	Наличие Сада	
1000	10 км.	Xop.	Есть 10101	Есть	О 1 СНет ОО 1	
1 2 10	20 км.	Xop.	Нет	Есть	Есть	
3	5 км.	Плох.	Есть	Нет	Нет	
4	9 км.	Xop.	Нет	Нет	Нет	
5	2 км.	Плох.	Нет	Нет	Есть	
6	50 км.	Xop.	Есть	Есть	Есть	
7	15 км.	Xop.	Есть	Нет	Нет	

Результат?

Критерий оценки результата?

Общая схема постановки и решения предметных задач

формализация задачи состоит в переводе на формальный (как правило, математический) язык описания цели, определении объектов и свойств, способов вычисления свойств, построении числовой модели (матрицы) данных для решения задачи, формализации требований к результату, проверке согласованности требуемого результата с целью.

Основное отличие формул от других способов представления информации состоит в том, что информация представлена в них в наиболее "свёрнутом", наиболее компактном виде. В формулах практически нет избыточно информации - не только каждый знак, но и их взаимное расположение несёт важную смысловую нагрузку.

Наиболее распространённым видом информационного моделирования в науке является математическое моделирование, а язык математики называют универсальным языком науки.

Математическая модель - приближенное описание какого - либо класса явлений внешнего мира, выраженное с помощью математической символики.

постановки и решения задач

Задача о гонщике

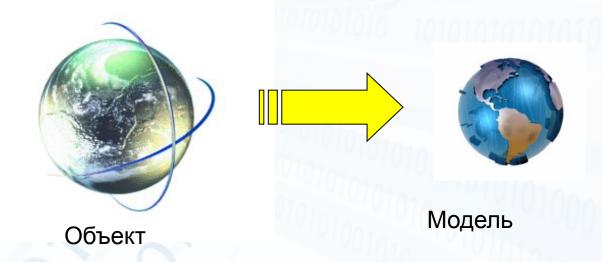
Цель: выбрать гонщика для участия в соревнованиях

			Характер			отношения		количество
			(1-спокойный;		отношения	со вторым	реак	заработанны
номер	рост	вес	0-вспыльчивый)	ОПЫТ	с командой	гонщиком	-ЦИЯ	х очков
a1	172	75	1	3	1	1	5	214
a2	182	69	1	4	1	1	4	67
a3	178	77	1	4	1	1	5	197
a4	170	75	0	3	1	1	3	30
a5	163	68	0	5	0	0	2	59
a6	172	80	0	2	0	0	5	0
a7	176	73	1	5	1	1	5	120
a8	191	85	1	1	1	1	5	15
a9	190	81	1	5	1	0	1	0
a10	182	76	1	5	1	1	1	3
a11	175	75	1	4	1	1	5	251
a12	184	74	0	4	0	1	5	78
a13	168	63	0	3	1	1	4	129
a14	173	70	1	3	1	0	2	3
a15	175	71	1	2	0	1	5	0
a16	179	73	1	1	0	0	4	569
a17	180	83	1	5	1	1	3	172
a18	180	88	1	3	1	1	4	12
a19	177	76	0	5	0	1	4	5
a20	174	72	1	5	1	1	5	174

Процесс выбора способа решения задачи включает все этапы анализа данных и корректировки информации, а также определение алгоритма решения задачи, обеспечивающего получение требуемого результата. После того как способ решения выбран, можно говорить о том, что выполнена постановка задачи.

На этапе *решения задачи* осуществляется в автоматизированном режиме преобразование схемы в технологическую (машинную) схему решения задачи и прохождение этой схемы на ЭВМ.

Затем проводится формальный анализ полученных результатов, т.е. проверка соответствия результата критериям оценки результата.


Содержательная интерпретация результатов состоит в согласовании результатов с целью исследования, сформулированными требованиями к результату и в принятии решения об использовании результатов либо об уточнении модельных представлений и формулировки задачи.

Модель никогда не заменит человека!

Модель (modulus - мера, образец, норма) — материальный или идеальный аналог оригинала (объекта, явления или процесса), создаваемый для хранения и расширения знания о нем.

Модель — образ (в том числе условный или мысленный) какого-либо объекта или системы объектов, используемый в определенных условиях в качестве их «заместителя».

В зависимости от средств моделирования модели могут быть:

- •материальными (натурными, физическими)
- •идеальными (абстрактными, концептуальными).

К первым относят *модели внешнего подобия*. Модели самолетов, машин, манекены и т.п. используют для предварительных испытаний.

В том случае, когда достаточно располагать информацией об изучаемых объектах, процессах или явлениях, когда некоторым образом можно абстрагироваться от реального, возникают модели второго рода.

Существует множество типов моделей и способов их классификации: по целям моделирования, областям применения, по сложности, способу описания и т.д.

- •Функциональные модели или модели—эрзацы заменяют объекты при выполнении определенных функций (протезы, искусственный сердечный клапан и т.п.).
- •Исследовательские модели математические и имитационные заменяют реальные объекты в ходе научных исследований.

В зависимости от области применения модели могут быть:

- •естественнонаучными (например, F =),) $\vec{a} = \frac{\vec{F}}{m}$,
- космогоническими (модель мира, времена года),
- общественного устройства (школа, общинно-родовые отношения, Римская республика, семья, мафия),
- литературными,
- компьютерными и т.п.

Модели, при построении которых преследуется цель определения такого состояния объекта, которое является наилучшим в каком-либо смысле или доступным, называются *нормативными*.

Модели, предназначенные для объяснения наблюдаемых факторов или прогноза поведения объекта, называются **дескриптивными**.

Семантические модели – формализуют связь между показателями без учета времени. *Динамические* используют для оценки явлений в развитии.

Модели с конкретными числовыми значениями характеристик называют **числовыми моделями**.

Графические модели — это графики, диаграммы, рисунки.

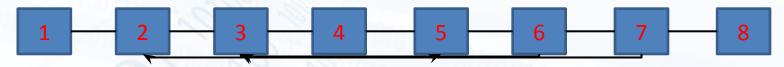
В информатике особая роль принадлежит информационным моделям — моделям, в которых изучаемое явление или процесс представлены в виде процессов передачи и обработки информации.

Моделирование

- -исследование объектов познания на их моделях;
- -построение и изучение моделей реально существующих предметов, процессов или явлений с целью получения объяснений этих явлений, а также для предсказания явлений, интересующих исследователя.

Виды моделирования

- ❖Компьютерное моделирование
- ◆Математическое моделирование
- ◆Математико-картографическое моделирование
- ❖Психологическое моделирование
- ◆Статистическое моделирование
- Структурное моделирование
- ♦ Экономико-математическое моделирование
- ♦Имитационное моделирование
- **♦**И Т. Д.


Процесс моделирования

Процесс моделирования включает три элемента:

- 1. субъект (исследователь),
- 2. объект исследования,
- 3. модель, определяющую (отражающую) отношения познающего субъекта и познаваемого объекта.

Этапы моделирования

- 1. Постановка цели моделирования.
- 2. Анализ моделирования объекта и выделение всех его известных свойств.
- 3. Анализ выделенных свойств с точки зрения цели моделирования и определение, какие из них следует считать существенными.
- 4. Выбор формы представления модели.
- 5. Формализация.
- 6. Анализ полученной модели на непротиворечивость.
- 7. Анализ адекватности полученной модели объекту и цели моделирования.

Моделирование — циклический процесс. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется.