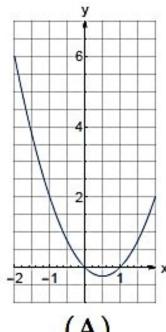
Итоговая диагностика Математическая вертикаль 8 класс Алгебра Тренировка 1. 8.05.2020z

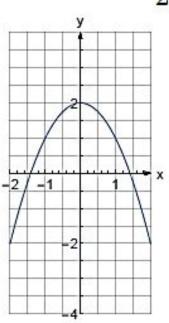
Задача 1. Вычислите:

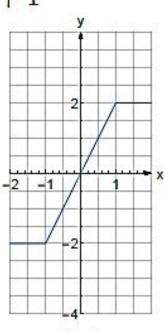
a)
$$\sqrt{32} \cdot \sqrt{18}$$
; = $\sqrt{16 \cdot 9 \cdot 4} = 24$

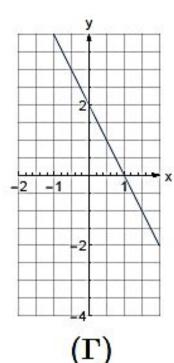
б)
$$(\sqrt{3} + \sqrt{12})^2 - (\sqrt{3} - \sqrt{12})^2$$
.
= $4\sqrt{12 \cdot 3} = 24$

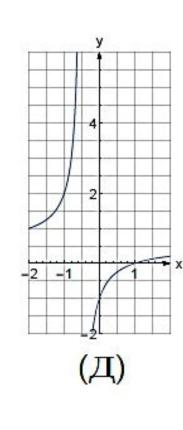
Задача 2. Установите соответствие между функциями и графиками:


(1)
$$y = |x+1| - |x-1|$$
; (2) $y = x(x-1)$; (3) $y = 2-2x$;


(2)
$$y = x(x-1)$$


(3)
$$y = 2 - 2x$$


(4)
$$y = 2 - x^2$$
;


(4)
$$y = 2 - x^2$$
; (5) $y = \frac{x - 1}{2x + 1}$.

(A)

(B)

(B)

(1)	(2)	(3)	(4)	(5)
В	A	Γ	Б	Д

Задача 3. Ниже дано несколько утверждений. Напишите «Да», если утверждение верно, и «Нет», если утверждение неверно:

а) Для любого действительного числа a верно равенство $\sqrt{a^2} = a$.

б) При любом значении x верно неравенство $x(3-x) \le x(2+x)$.

в) Уравнение $x^2 + bx - 5 = 0$ при любом b имеет два различных корня.

Задача 4. Решите уравнения:

a)
$$2x^2 - x - 6 = 0$$
; 6) $\frac{x}{x - 3} - \frac{1}{2x - 5} = 1$.
 $t = 2x$ $ODB \ x \neq 3$; 2,5
 $t^2 - t - 12 = 0$ $x(2x - 5) - (x - 3) = (2x - 5) \cdot (x - 3)$
 $t_1 \cdot t_2 = -12$ $5x = 12, \ x = 2,4$

 $t_1 = -3$

 $t_2 = 4$

 $x = \frac{t}{2}$

Oтвет: 2; -1, 5

Задача 5. Решите неравенство

$$(x-4)(2x+3) < 2x^2 + 5.$$

$$-5x - 12 < 5$$

$$-5x < 17$$

$$5x > -17$$

$$x > -3,4$$

Ombem :
$$(-3, 4; +\infty)$$

Задача 6. В магазине купили некоторое число метров ткани за 3600 р. На рынке за эту же сумму можно купить на 6 м ткани больше, потому что один метр стоит на 50 рублей дешевле. Сколько метров ткани купили в магазине?

	Стоимос	Кол-во	Цена			
	3600	X	3600			
В магазине	3000	\mathcal{A}	\overline{x}			
	3600	x+6	3600			
На рынке	3000	$\lambda + 0$	$\overline{x+6}$			
3600 3600						
$\frac{3600}{x} - \frac{3600}{x+6} = 50$						
$\frac{72}{-} - \frac{72}{-} = 1$						

Ответ:12 метров

Задача 7. Для функции $y = 6 - \sqrt{x-4}$ найдите

- а) область её определения;
- б) множество её значений.

$$D(y): x-4 \ge 0$$
 $D(y): [4;+\infty)$

E(y):

$$x-4 \ge 0 \Rightarrow \sqrt{x-4} \ge 0 \Rightarrow -\sqrt{x-4} \le 0$$

$$-\sqrt{x-4}+6\leq 6$$

$$E(y): (-\infty; 6]$$

Задача 8*. В квадратное уравнение $2x^2 - (4a+1)x + 2a^2 + 1 = 0$ вместо a наудачу подставляют одно из целых чисел $-2, -1, 0, \ldots, 6, 7$. Какова вероятность того, что получится уравнение с двумя различными корнями?

$$D > 0$$

$$D = (4a+1)^2 - 4 \cdot 2 \cdot (2a^2 + 1)$$

$$8a-7>0 \Rightarrow a > \frac{7}{8} \ge 1$$

$$P(A) = \frac{7}{10}$$

Ответ: 0, 7