

АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ В ПОЗИЦИОННЫХ СИСТЕМАХ СЧИСЛЕНИЯ

ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ

10 класс

Ключевые слова

- позиционные системы счисления
- арифметические операции в системе счисления с основанием *q*
- таблица сложения
- таблица умножения

Таблицы сложения в двоичной, троичной и восьмеричной системах

Заполните пропуски в таблицах:

Двоичная система счисления

+	0	~
0	0	7
1	1	

Троичная система счисления

+	0	1	2
0	0	1	2
1	1	2	
2	2		

Восьмеричная система счисления

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	
2	2	3	4	5	6	7		
3	3	4	5	6	7			
4	4	5	6	7				
5	5	6	7		1			
6	6	7						
7	7							16

Таблица сложения в шестнадцатеричной системе

L	
`	Ω.
	전 전
	=
	エ
	(1)
	\cong
	Ь.
	счислен
	$\tilde{}$
	_
	T
	()
	•
	$\boldsymbol{\omega}$
	ž
	2
	<u></u>
	Ψ
	\circ
	_
	六
	0
	_
	U,
	$\boldsymbol{\omega}$
	Ĭ
	±
	5
	$\overline{}$
	$\overline{}$
	<u>Q</u>
	ധ
	\vdash
	<u>'</u> ~
	ιυ_
	$\overline{}$
	⇉
	σ
	Ť
	亡
	естнадцатеричная система (
	\mathbf{O}
	(1)
	—

CU	ЦАС	П	М	40													
ИЯ	+	0	1	2	3	4	5	6	7	8	9	A	В	C	D	ш	F
ΘН	0	0	1	2	3	4	5	6	7	8	9	Α	В	O	D	Ш	F
5	1	1	2	3	4	5	6	7	8	9	Α	В	O	D	Ш	F	10
Z	+ 0 1 2 3	2	3	4	5	6	7	8	9	Α	В	O	D	Е	F	10	11
a	3	3	4	5	6	7	8	9	Α	В	O	D	Ш	F	10	11	12
)MS	4	4	5	6	7	8	9	Α	В	C	D	Е	F	10	11	12	13
система	5	5	6	7	8	9	Α	В	С	D	Е	F	10	11	12	13	14
СИ	6	6	7	8	9	Α	В	С	D	Ш	F	10	11	12	13	14	15
	7	7	8	9	Α	В	С	D	Е	F	10	11	12	13	14	15	16
4H6	8	8	9	Α	В	С	D	Е	F	10	11	12	13	14	15	16	17
7 7 7	9	9	Α	В	O	D	Е	F	10	11	12	13	14	15	16	17	18
Тер	A	Α	В	O	D	Е	F	10	11	12	13	14	15	16	17	18	19
<u>ца</u> .	В	В	С	D	Ш	F	10	11	12	13	14	15	16	17	18	19	1A
аді	C	O	D	Ш	F	10	11	12	13	14	15	16	17	18	19	1A	1B
естнадцатеричная	D	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
ec	ш	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D
Ě	F	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E

Сложение чисел в системе счисления q

Чтобы в системе счисления с основанием q получить сумму S двух чисел A и B, надо просуммировать образующие их цифры по разрядам i справа налево:

- если $a_i + b_i < q$, то $s_i = a_i + b_i$, старший (i + 1)-й разряд не изменяется
- если $a_i + b_i \ge q$, то $s_i = a_i + b_i q$, старший (*i* + 1)-й разряд увеличивается на 1

Сложение чисел в системе счисления с основанием q

№ 1. a) _ 1 2 1 1 0 1₃ 222_{3} 1221003 12A₊7₂1₂>₃ DECAF₁₆ записываем 3 - 3 = 0 под 1-м разрядом, а 2-й разряд увеличиваем на 1 $+ a_n \dots a_{i+1} a_i \dots a_1 a_{0q}$ $b_n \dots b_{i+1} b_i \dots b_1 b_{0,q}$ $S_n \dots S_{i+1} S_i \dots S_1 S_{0 q}$

 $s_i = a_i + b_i - q$

Реши сам

Решите самостоятельно

Nº 2.

$$\begin{array}{r}
 + 555555_{8} \\
 & 12345_{8} \\
\hline
 & 570122_{8}
\end{array}$$

$$\begin{array}{c} \text{c)} + 38 \text{CB} 6_{16} \\ + 20 \text{A}_{16} \\ \hline 42 \text{EC} 0_{16} \end{array}$$

OTBET

Вычитание чисел в системе счисления с основанием *q*

Чтобы в системе счисления с основанием q получить разность R двух чисел A и B, надо вычислить разности образующих их цифр по разрядам i справа налево:

- если a_i ≥ b_i, то r_i = a_i b_i,
 старший (i + 1)-й разряд не изменяется
- если a_i < b_i, то r_i = q + a_i b_i,
 старший (i + 1)-й разряд уменьшается на 1

Вычитание чисел в системе счисления с основанием q

Nº 3.

a)
$$\frac{101101_3}{10210_3}$$
 $\frac{20121_3}{}$

$$\begin{array}{c}
\text{C)} & - & \text{DECAF}_{16} \\
& & \text{CAFE}_{16} \\
\hline
& & \text{D21} \text{B1}_{16}
\end{array}$$

записываем 3 + 0 - 1 = 2 под 5-м разрядом, делая заем в 6-м разряде

$$a_i < b_i$$

$$r_i = q + a_i - b_i$$

$$a_i \ge b_i$$

$$r_i = a_i - b_i$$

Реши сам

Решите самостоятельно

Nº 4.

b)
$$_{545454_{8}}$$
 c) $_{54345_{16}}$ $_{8445_{16}}$ $_{3BFA3_{16}}$

OTBET

Таблицы умножения в двоичной, троичной и восьмеричной системах счисления

Двоичная система счисления

X	0	1
0	0	0
1	0	1

Троичная система счисления

X	0	1	2
0	0	0	0
1	0	1	2
2	0	2	11

Восьмеричная система счисления

X	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	10	12	14	16
3	0	3	6	11	14	17	22	25
4	0	4	10	14	20	24	30	34
5	0	5	12	17	24	31	36	43
6	0	6	14	22	30	36	44	52
7	0	7	16	25	34	43	52	61

Таблица умножения в шестнадцатеричной системе

L	
Ī	W.
	Z
	$\overline{}$
	杰
	$\underline{\Psi}$
	_
	ислен
	\leq
	灵
	C
	$\boldsymbol{\omega}$
	Ë
	<u> </u>
	O
	\vdash
	\circ
	\leq
	$\overline{\Omega}$
	•
	иная система
	$\vec{\Omega}$
	Ϋ́
	=
	_
	_
	Q
	(1)
	\sqsubseteq
	Έ
	<u>~</u>
	_
	\Box
	α
	естнадцатери
	亡
	$\overline{\Box}$
	\sim
	$\overline{\Psi}$

	MC		М	40												•	
1	X	0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
	2	0	2	4	6	8	Α	C	Е	10	12	14	16	18	1A	1C	1E
	3	0	3	5	6	O	F	12	15	18	1B	1E	21	24	27	2A	2D
	4	0	4	8	O	10	14	18	1C	20	24	28	2C	30	34	38	3C
	5	0	5	Α	H	14	19	1E	23	28	2D	32	37	3C	41	46	4B
	6	0	6	C	12	18	1E	24	2A	30	36	3C	42	48	4E	54	5A
	7	0	7	Е	15	1C	23	2A	31	38	3F	46	4D	54	5B	62	69
	8	0	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
	6	0	9	12	1B	24	2D	36	3F	48	51	5A	63	6C	75	7E	87
	A	0	Α	14	1E	28	32	3C	46	50	5A	64	6E	78	82	8C	96
	В	0	В	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A5
	O	0	O	18	24	30	3C	48	54	60	6C	78	84	90	9C	A8	B4
	D	0	D	1A	27	34	41	4E	5B	68	75	82	8F	9C	A9	B6	D2
	ш	0	Е	1C	2A	38	46	54	62	70	7E	8C	9A	A8	B6	C4	D2
	F	0	F	1E	2D	3C	4B	5A	69	78	87	96	A5	B4	D2	D2	E1

Умножение многозначного числа на однозначное в системе счисления *q*

Чтобы в системе счисления q получить произведение M многозначного числа A и однозначного числа b, надо вычислить произведения b и цифр числа A по разрядам i:

- если a_i · b < q, то m_i = a_i · b,
 старший (i + 1)-й разряд не изменяется
- если a_i · b ≥ q, то m_i = a_i · b mod q,
 старший (i + 1)-й разряд увеличивается на a_i · b div q

Умножение чисел в системе счисления с основанием *q*

Nº 5. c) $_{X}$ 1 $_{2}^{2}$ $_{3}^{1}$ 4 $_{16}$ b) $_{\rm X}$ 1 $\stackrel{2}{0}$ $\stackrel{1}{3}$ 2₈ 102013 B608₁₆ записываем $4 \mod 3 = 1 \mod 1$ -м разрядом, 2-й разряд увеличиваем на $4 \dim 3 = 1$ a_i · b div q $a_n \dots a_{i+1} a_i \dots a_1 a_0$ $m_n \dots m_{i+1} m_i \dots m_1 m_{0q}$ $m_i = a_i \cdot b \mod q$ $m_i = a_i \cdot b$

Реши сам

Решите самостоятельно

Nº 6.

a)
$$x \frac{2102_3}{2_3}$$
 $\frac{11211_3}{}$

b)
$$x \frac{205_8}{5_8} = \frac{1231_8}{1231_8}$$

c)
$$\times \begin{array}{c} A1B2_{16} \\ 5_{16} \\ \hline 3287A_{16} \end{array}$$

$$a_{n} \dots a_{i+1} a_{i} \dots a_{1} a_{0 q}$$

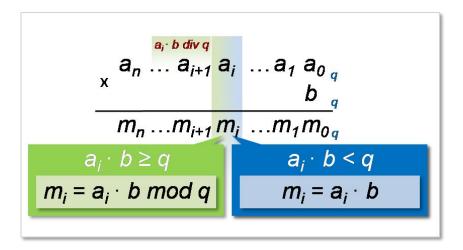
$$m_{n} \dots m_{i+1} m_{i} \dots m_{1} m_{0 q}$$

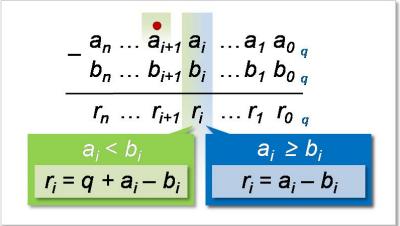
$$a_{i} \cdot b \geq q$$

$$m_{i} = a_{i} \cdot b \mod q$$

$$a_{i} \cdot b \leq q$$

$$m_{i} = a_{i} \cdot b$$


OTBET


Деление чисел в системе счисления с основанием *q*

Деление нельзя свести к поразрядным операциям над цифрами, составляющими число.

Деление чисел в системе счисления с произвольным основанием q выполняется так же, как и в десятичной системе счисления.

А значит нам понадобятся правила умножения и вычитания чисел в системе счисления с основанием *q*.

Решите самостоятельно

№ 7.

a)
$$2001_3 : 12_3 = 102_3$$
 b) $4545_8 : 5_8 = 741_8$

$$-\frac{2001 \lfloor 12}{12}$$
 c) $2B5C_{16} : A_{16} = 45$

$$-\frac{101}{0}$$

b)
$$4545_8 : 5_8 = 741_8$$

c)
$$2B5C_{16}$$
: $A_{16} = 456_{16}$

$a_n \dots a_{i+1} a_i \dots a_1 a_0$ $m_n \dots m_{i+1} m_i \dots m_1 m_{0q}$ $a_i \cdot b \ge q$ $a_i \cdot b < q$ $m_i = a_i \cdot b \mod q$ $m_i = a_i \cdot b$

OTBET

Двоичная арифметика

Таблица сложения + 0 1 0 0 1 1 1 10

	Таблица вычитания								
_	– 0 1								
0	0	11							
1	1	0							

Таблица умножения								
X	0	_						
0	0	1						
1	1	1						

Nº 8.

a)
$$+ \frac{111111}{11112}$$

 $+ \frac{1}{1000002}$

b)
$$-\frac{1000_{2}}{1_{2}}$$

$$\frac{1111_{2}}{1}$$

Задание 1. Найдём количество единиц в двоичной записи числа, являющегося результатом десятичного выражения $2^{4000} + 4^{2016} + 2^{2018} - 8^{600} + 6$.

Решение:

Представим все операнды исходного выражения в виде степеней двойки:

$$2^{4000} + 4^{2016} + 2^{2018} - 8^{600} + 6$$

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Исходное выражение
$$2^{4000} + 4^{2016} + 2^{2018} - 8^{600} + 6$$
 примет вид $2^{4000} + 2^{4032} + 2^{2018} - 2^{1800} + 2^2 + 2^1$

Перепишем выражение в порядке убывания степеней:

$$2^{4032} + 2^{4000} + 2^{2018} - 2^{1800} + 2^2 + 2^1$$

Решение:
$$2^{4032} + 2^{4000} + 2^{2018} - 2^{1800} + 2^2 + 2^1$$

Для работы с десятичными числами вида 2ⁿ полезно иметь в виду следующие закономерности в их двоичной записи:

$$2^1 = 10 = 1 + 1$$
; $2^2 = 100 = 11 + 1$; $2^3 = 1000 = 111 + 1$; ...

В общем виде:
$$2^n = 1 \mathbb{Q}_{\mathbb{Q} \cdot \mathbb{Q}} 0 = \mathbb{Q}_{\mathbb{Q} \cdot \mathbb{Q}} 1 + 1$$

Для натуральных n и m таких, что n > m, получаем:

$$2^{n}+2^{m}=1\underset{n}{\bigcirc}_{\mathbb{N}}0+1\underset{m}{\bigcirc}_{\mathbb{N}}0=1\underset{n-m-1}{\bigcirc}_{\mathbb{N}}01\underset{m}{\bigcirc}_{\mathbb{N}}0,$$

$$2^{n}-2^{m}=1\underset{n}{\bigcirc}.1+1-(1\underset{m}{\bigcirc}.1+1)=1\underset{n}{\bigcirc}.1-1\underset{m}{\bigcirc}.1=1\underset{n-m}{\bigcirc}.1=1\underset{m}{\bigcirc}.1$$

Эти соотношения позволят подсчитать количество «1» в выражении без вычислений. Двоичные представления чисел 2^{4032} и 2^{4000} в несут в двоичное представление суммы по одной «1». Разность $2^{2018} - 2^{1800}$ в двоичной записи представляет собой цепочку из 218 единиц и следующих за ними 1800 нулей. Слагаемые 2^2 и 2^1 дают ещё 2 единицы. **Итого:** 1 + 1 + 218 + 1 + 1 = 222.

Задание 2. Найдём количество цифр в восьмеричной записи числа, являющегося результатом десятичного выражения:

$$2^{299} + 2^{298} + 2^{297} + 2^{296}$$

Решение:

Двоичное представление исходного числа имеет вид:

Всего в этой записи 300 двоичных символов. При переводе двоичного числа в восьмеричную систему счисления каждая триада исходного числа заменяется восьмеричной цифрой.

Следовательно, восьмеричное представление исходного числа состоит из 100 цифр.

Ответ: 100 цифр

Самое главное

Арифметические операции в позиционных системах счисления с основанием *q* выполняются по правилам, аналогичным правилам, действующим в десятичной системе счисления.

Если необходимо вычислить значение арифметического выражения, операнды которого представлены в различных системах счисления, можно:

- 1) все операнды представить в привычной нам десятичной системе счисления;
- вычислить результат выражения в десятичной системе счисления;
- 3) перевести результат в требуемую систему счисления.

Самое главное

Для работы с десятичными числами вида 2ⁿ полезно иметь в виду следующие закономерности в их двоичной записи:

$$2^{n} = 1 \underset{n}{\mathbb{N}} \times 0 = \underset{n}{\mathbb{N}} \times 1 + 1$$

Для натуральных n и m таких, что n > m, получаем:

$$2^{n} + 2^{m} = 1 \underset{n}{\square} \underset{n}{\square} 0 + 1 \underset{m}{\square} \underset{n-m-1}{\square} 0 = 1 \underset{m}{\square} \underset{n-m-1}{\square} 0 1 \underset{m}{\square} \underset{n}{\square} 0,$$

$$2^{n} - 2^{m} = 1_{\square} \cdot 1 + 1 - (1_{\square} \cdot 1 + 1) = 1_{\square} \cdot 1 - 1_{\square} \cdot 1 = 1_{\square} \cdot 1 \quad \underset{m}{\square} \cdot 1 = 1_{\square} \cdot 1 = 1_{\square$$

1. Выполните арифметические операции над двоичными числами. Для того чтобы убедиться в правильности полученных результатов, найдите десятичные эквиваленты операндов и результата.

Проверка:

a)
$$101111010_2 + 100111_2 = 110100001_2$$
 $378 + 39 = 417$

6)
$$10111,01_2 + 1,11_2 = 11001,00_2 = 23,25 + 1,75 = 25$$

B)
$$10101101_2 - 11101_2 = 10010000_2 = 173 - 29 = 144$$

$$\Gamma$$
) 11011₂ · 1101₂ = 101011111₂ 27 · 13 = 351

2. Какое число следует за каждым из данных. Ответ для каждого числа дайте в указанной системе счисления.

- a) 10111₂ б) 344₅ в) 7677₈ г) EFF₁₆ 11000₂
- 400₅
- 7700₈
- F00₁₆

OTBET

Какое число предшествует каждому из данных. Ответ для каждого числа дайте в указанной системе счисления.

- a) 10100_2 6) 320_4 B) 7010_8 r) $9D0_{16}$

- 10011₂ 313₄

- 7007₈
- 9CF₁₆

3. Сумму восьмеричных чисел

перевели в 16-теричную систему счисления. Найдите в 16-ной записи числа, равного этой сумме, 5-ю цифру слева.

Решение:

Найдем сумму данных чисел.

В полученной сумме

10 восьмеричных цифр или

10-3 - 2 = 28 двоичных цифры или

28: 4 = 7 тетрад

Нас интересует 5-я слева (она же 3-я справа) тетрада: $0011_2 = 3_{16}$

Ответ: цифра 3

4. Какая первая цифра в шестнадцатеричной записи числа: $2^{378} + 2^{377} + 2^{376}$?

Ответ: 7

Комментарий.

В двоичной записи числа 379 цифр, первые три из которых «1», остальные – «0», т.е. начало двоичного числа 1110000...

Для перевода в шестнадцатеричную систему счисления двоичное число разделим на тетрады, для этого двоичное число слева дополним одним нулем (01110000...), чтобы получилось ровное число тетрад 380 : 4 = 95.

Первая тетрада (0111) и будет искомой цифрой: $0111_2=7$