Общие свойства растворов

Дисперные системы

Смеси веществ по степени дисперсности (дисперсность — характеристика размеров частиц данного вещества) условно разделяют на грубодисперсные, или механические смеси (размер частиц 1000 нм), коллоидные растворы (размер частиц 1—100 нм) и истинные растворы, размер частиц которых определяется размером ионов, молекул, ионных пар и различных ассоциатов.

Виды дисперсных систем

- ◆ **Суспензия** взвесь частиц одного или нескольких твердых веществ в жидкой среде.
- ◆ Эмульсия взвесь капель одной или нескольких жидких веществ в жидкой среде другого состава.
- Аэрозоли взвесь жидких и твердых частиц в газообразной среде Частицы твердых веществ в аэрозолях часто несут определенный заряд: основные веществ (Fe_2O_3 , MgO, ZnO, Cr_2O_3 и др.) образуют отрицательно заряженную пыль, а кислотные (SiO_2 , C, S_8 , TiO_2 и др.) положительно заряженную.

Виды дисперсных систем

- ◆ Коллоидные растворы (или золи) —
 микрогетерогенные, метастабильные системы с жидкой средой, содержащей очень мелкие частицы,
 участвующие в интенсивном броуновском движении.
 Поэтому они равномерно распределены по объему и
 очень медленно осаждаются (коагулируют). Золи
 кажутся однородными и прозрачными.
- ◆ Истинные растворы это однофазные системы переменного состава, содержащие атомы, ионы или молекулы и различные ассоциаты последних.

Качественный состав растворов

- Растворителем считают то вещество, агрегатное состояние которого не изменяется при образовании раствора
- Растворенное вещество
- Если массы растворенного вещества m_{B2} и растворителя m_{B1} сопоставимы ($m_{B2} \approx m_{B1}$), то раствор считают **концентрированным**, если масса растворенного вещества m_2 много меньше массы растворителя m_1 ($m_{B2} << m_{B1}$), то раствор считают **разбавленным**.

Количественный состав растворов

• Соотношение количества растворенного вещества и растворителя количественно определяет концентрация раствора. В неорганической химии для количественного выражения состава растворов используют массовую долю, молярную концентрацию и эквивалентную концентрацию.

Концентрация раствора

- Концентрация в химии это молярность раствора Единица измерения молярной концентрации $c_{\rm B2}$ моль/л. Если в растворе серной кислоты H_2SO_4 молярная концентрация равна 1 моль/л, то это обозначается как 1M раствор H_2SO_4 (одномолярный раствор серной кислоты).
- ◆ **Массовая доля** $w_{\rm B}$ растворенного вещества В $w_{\rm B} = m_{\rm B} / m_{\rm (p)} = m_{\rm B} / (m_{\rm B} + m_{\rm воды})$
- Эквивалентная концентрация (нормальность): следует дополнительно определить фактор эквивалентности или эквивалентное число.

Концентрация раствора

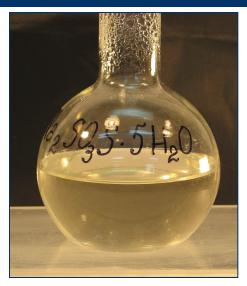
- Моляльность растворенного вещества В (обозначение c_m) определяется как отношение количества вещества В $(n_{\rm B},$ моль) к массе растворителя $(m_s,$ кг): $c_m = n_{\rm B}, /m_s$. Единица измерения моль/кг
- Мольная доля вещества в смеси (в том числе в растворе) обозначается как $x_{\rm B}$ и равна отношению количества вещества В $(n_{\rm B},$ моль) к суммарному количеству всех веществ в смеси (растворе) $\Sigma n_i = n_{\rm B} + n_1 + n_2 + \ldots + n_i$, а именно:
- $x_{\rm B} = n_{\rm B} / \Sigma n_{i}$. Мольная доля безразмерная величина.

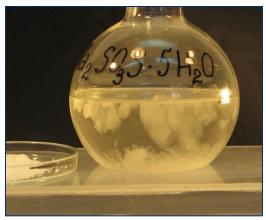
Растворимость

- ◆ Растворимость это способность вещества растворяться в данном растворителе при заданной температуре.
- ◆ Количественно растворимость измеряется как концентрация насыщенного раствора.

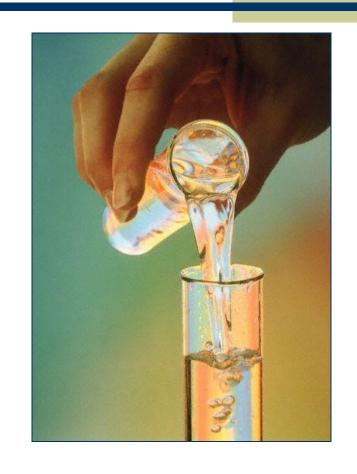
Насыщенный раствор

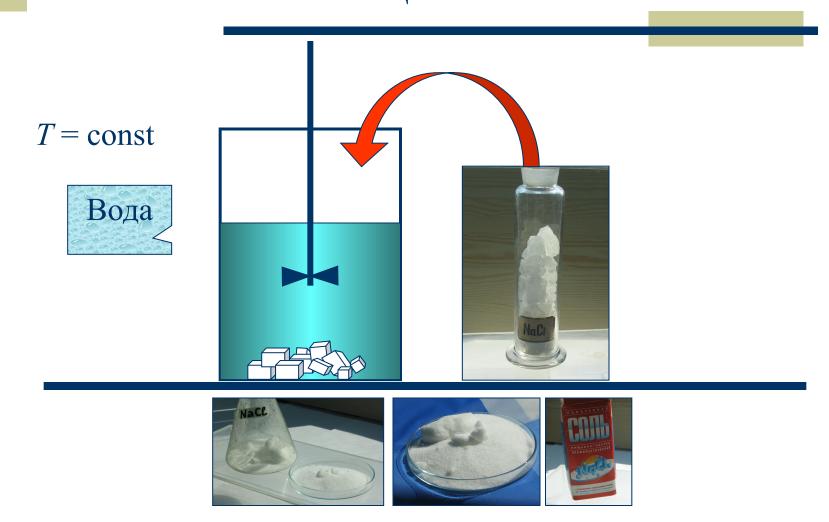
- Насыщенным (при данной температуре) называют раствор, который находится в равновесии с растворяемым веществом.
- Устанавливается фазовое равновесие: растворяемое вещество □ раствор


Ненасыщенный раствор

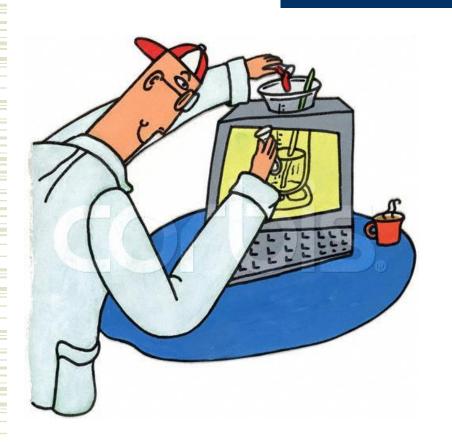

• Ненасыщенным называют раствор, концентрация которого меньше, чем у насыщенного (при данной температуре) раствора.

Пересыщенный раствор


• Пересыщенный раствор содержит растворенного вещества больше, чем требуется для насыщения при данной температуре.

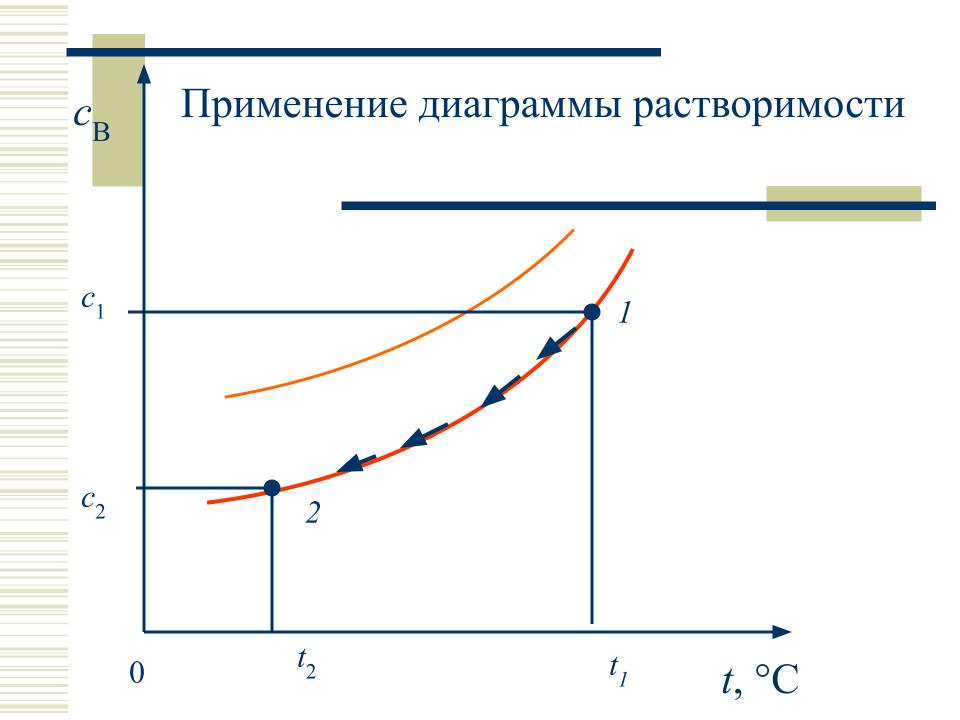


Исследование растворимости веществ


• Эксперимент: растворение кристаллического вещества (хлорид натрия) в жидком растворителе (вода)

Исследование растворимости веществ

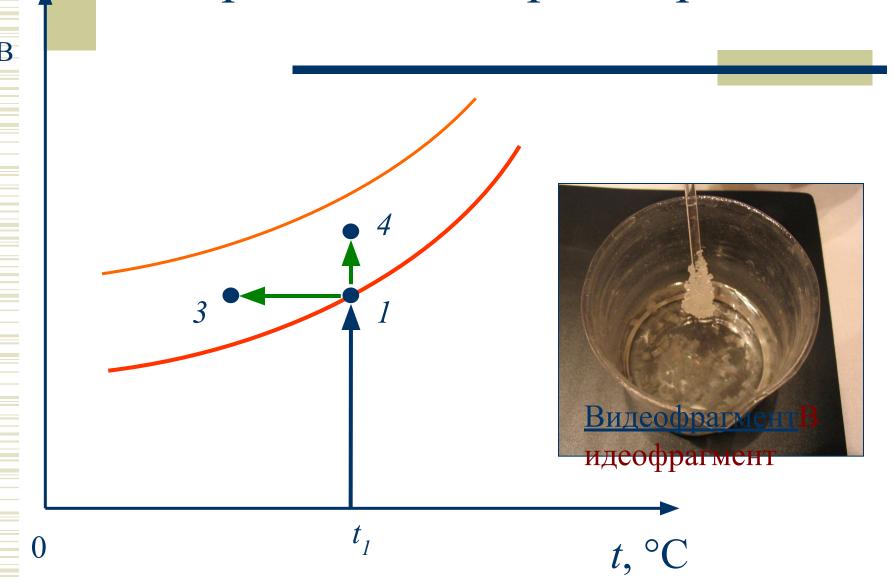
Диаграмма растворимости



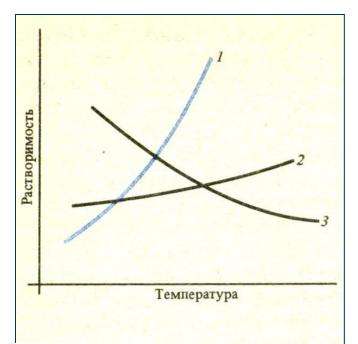
◆ График зависимости растворимости от температуры — диаграмма (политерма) растворимости

Применение диаграммы растворимости

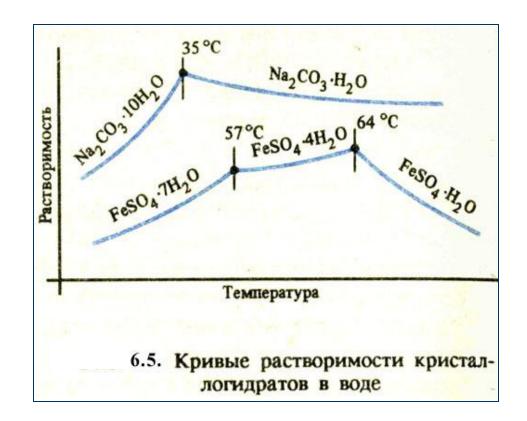
- Эксперимент:
- 1. Получение насыщенного раствора из ненасыщенного.
- 2. Охлаждение насыщенного раствора
- Диаграмма растворимости



Пересыщенные растворы

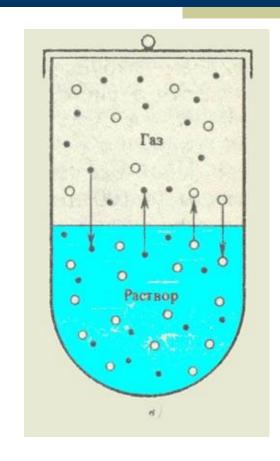


- Эксперимент: получение пересыщенных растворов из насыщенных
- Диаграмма растворимости


Пересыщенные растворы

Виды диаграмм растворимости

. Кривые растворимости различных твердых веществ в воде: 1 — большинство веществ; 2 — NaCl, LiOH, K₂SO₃; 3 — MnSO₄, Li₂SO₄, CaCrO₄


Растворимость газов

- Взаимная растворимость газов неограниченна.
- Растворимость газа в жидкости зависит от природы газа, растворителя, температуры и прямо пропорциональна парциальному давлению $\Box p_{\rm B}$ газа В над поверхностью его раствора: $\Box p_{\rm B} = K_{_{\Gamma}} x_{_{\rm B}}$ (закон Генри).

Растворимость газов в воде

- Кислород O_2 :
- $4,89^{0^{\circ}\text{C}}$ $3,10^{20^{\circ}\text{C}}$ $1,72^{100^{\circ}\text{C}}$
- **◆** A30T N₂:
- $2,35^{\circ \text{C}}$ $1,54^{20^{\circ}\text{C}}$ $0,95^{100^{\circ}\text{C}}$
- ◆ Радон Rn:
- $51,0^{0^{\circ}\text{C}}$ $22,4^{25^{\circ}\text{C}}$ $13,0^{50^{\circ}\text{C}}$

(в мл газа/ $100 \, \text{г} \, \text{H}_2\text{O}$)

Растворимость газов

- $\mathbb{W}_1 + \Gamma_2$: сольватация $\mathbb{H}_2 \mathcal{O}_{(\mathbb{w})} \square (\mathbb{H}_2 \mathcal{O})_x$ при 25 °C $x \approx 4$
- Энтальпия сольватации $\Delta H_{\rm c} < 0$ (экзотермич.)

$$\Gamma_{(p)} \to \Gamma(H_2O)_y$$

$$\Gamma_{(s)} \to \Gamma(\mathbf{x}_1)_{\mathbf{y}}$$

Взаимная растворимость жидкостей

- Неограниченная взаимная растворимость (вода и этанол, вода и серная кислота, вода и ацетон и др.)
- Практически полная нерастворимость (вода и бензол, вода и CCl₄ и др.)
- Ограниченная взаимная растворимость

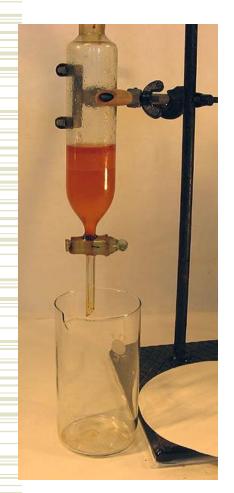
Ограниченная взаимная растворимость в системе вода — диэтиловый эфир

A

Б

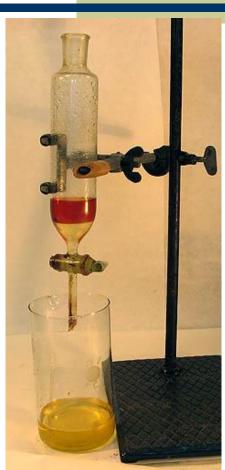
• При 10 °C

А: 99,0% эфира + 1,0% воды


Б: 88,0% воды + 12,0% эфира


• При 50 °C

А: 98,3% эфира + 1,7% воды


Б: 95,9% воды + 4,1% эфира

Экстракция иода керосином из водного раствора

Растворимость твердых веществ в жидкостях ($\mathbb{X}_1 + \mathbb{T}_2$)

- ◆ Для смешения: $\Delta G_{\rm M} = \Delta H_{\rm M}$ $T\Delta S_{\rm M}$
- Энтропийный фактор:

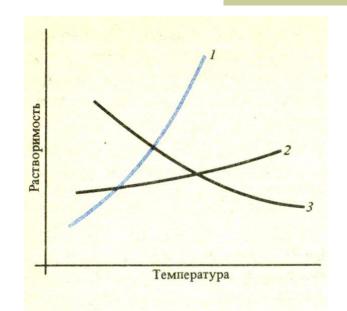
 $\Delta S_{\mathrm{M}} > 0$; если $T \uparrow$, $(T \Delta S_{\mathrm{M}}) \downarrow$

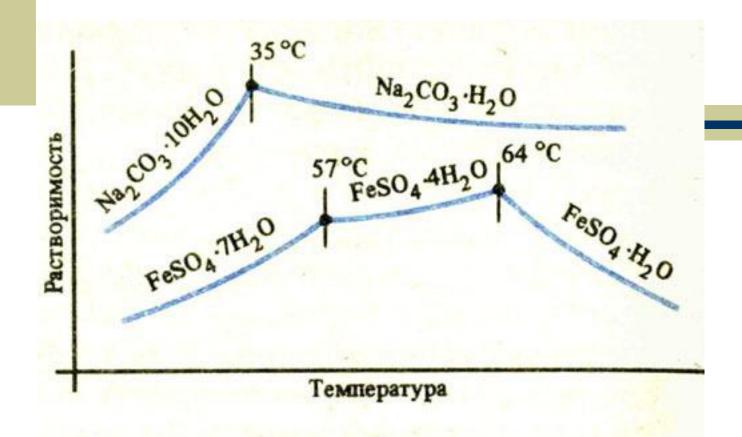
• Энтальпийный фактор:

$$\Delta H_{\rm M} = \Delta H_{\rm \kappa p} + \Delta H_{\rm c} + \Delta H_{\rm p}$$

 $\Delta H_{\rm kp}$ – разрушение кристаллической решетки (эндотермич.)

 $\Delta H_{\rm c}$ – сольватация (экзотермич.)


 $\Delta H_{\rm p}$ – разрушение структуры растворителя (эндотермич.), ≈ 0


Температурная зависимость растворимости

• Возможно 3 случая:

$$\Delta H_{\rm M} < 0$$
 (орг. вещ-ва, MOH, ${\rm Li_2CO_3}, {\rm AlCl_3} \ldots$) $\Delta H_{\rm M} > 0$ (KNO₃, NH₄NO₃, KI ...) $\Delta H_{\rm M} \approx 0$ (CdI₂)

Кривые растворимости различных твердых веществ в воде: 1 — большинство веществ; 2 — NaCl, LiOH, K₂SO₃; 3 — MnSO₄, Li₂SO₄, CaCrO₄

Кривые растворимости кристаллогидратов в воде